K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

k cho mình thì mình mới làm

19 tháng 4 2016

đề bài này hình như mik chép thiếu...xin lỗi nha

29 tháng 1 2018

a + b = c + d => d = a + b - c

Vì ab là số liền sau của cd nên ab - cd = 1

=> ab - c(a + b - c) = 1

=> ab - ac - bc + c2 = 1

=> a(b - c) - c(b - c) = 1

=> (a - c)(b - c) = 1

=> a - c = b - c (vì cùng bằng 1 hoặc -1)

=> a = b (đpcm)

27 tháng 2 2021

5y356y5

20 tháng 5 2015

Từ a + b = c + d suy ra d = a + b - c.

Vì tích ab là số liền sau của tích cd nên ab - cd = 1.

\(\Leftrightarrow\) ab - c.(a + b - c) = 1

\(\Leftrightarrow\)ab - ac - bc + c2 = 1

\(\Leftrightarrow\)a.( b - c) - c.(b - c) = 1

\(\Leftrightarrow\)(b - c).(a - c) = 1

 \(\Rightarrow\) a - c = b -c (vì cùng bằng 1 hoặc -1) \(\Rightarrow\) a = b

  Vậy suy ra điều phải chứng minh.

20 tháng 5 2015

Bạn vào http://olm.vn/hoi-dap/question/59155.html mà xem!

11 tháng 4 2017

a) Giải:

Ta có:

\(ab-ac+bc-c^2=-1\)

\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)

Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)

Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau

\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)

Suy ra \(b=-a\) tức \(a\)\(b\) là hai số đối nhau

Vậy \(a\)\(b\) là hai số đối nhau (Đpcm)

b) Giải:

Ta có:

Từ \(a+b=c+d\Rightarrow d=a+b-c\)

\(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)

\(\Rightarrow ab-c\left(a+b-c\right)=1\)

\(\Rightarrow ab-ac-bc+c^2=1\)

\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)

\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)

Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))

Hay \(a=b\) (Đpcm)

20 tháng 3 2015

trường hợp : ab = cd + 1 

ta có a+ b = c + d 

=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên 

cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1 

c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm

Trường hợp 2: ab = cd - 1: tương tự

20 tháng 3 2015

Ta có:

\(a+b=c+d\)

\(\Rightarrow d=a+b-c\)

\(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)

Mà \(d=a+b-c\) nên ta có:

\(ab-c.\left(a+b-c\right)=1\)

\(\Rightarrow ab-ac-bc+c^2\)

\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)

\(\Rightarrow\left(a-c\right)\left(b-c\right)=1\)

\(\Rightarrow a-c=b-c\)

\(\Rightarrow a=b\)