Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + b = c + d => d = a + b - c
Vì ab là số liền sau của cd nên ab - cd = 1
=> ab - c(a + b - c) = 1
=> ab - ac - bc + c2 = 1
=> a(b - c) - c(b - c) = 1
=> (a - c)(b - c) = 1
=> a - c = b - c (vì cùng bằng 1 hoặc -1)
=> a = b (đpcm)
Từ a + b = c + d suy ra d = a + b - c.
Vì tích ab là số liền sau của tích cd nên ab - cd = 1.
\(\Leftrightarrow\) ab - c.(a + b - c) = 1
\(\Leftrightarrow\)ab - ac - bc + c2 = 1
\(\Leftrightarrow\)a.( b - c) - c.(b - c) = 1
\(\Leftrightarrow\)(b - c).(a - c) = 1
\(\Rightarrow\) a - c = b -c (vì cùng bằng 1 hoặc -1) \(\Rightarrow\) a = b
Vậy suy ra điều phải chứng minh.
a) Giải:
Ta có:
\(ab-ac+bc-c^2=-1\)
\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)
Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)
Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau
\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)
Suy ra \(b=-a\) tức \(a\) và \(b\) là hai số đối nhau
Vậy \(a\) và \(b\) là hai số đối nhau (Đpcm)
b) Giải:
Ta có:
Từ \(a+b=c+d\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
\(\Rightarrow ab-c\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2=1\)
\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)
\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)
Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))
Hay \(a=b\) (Đpcm)
trường hợp : ab = cd + 1
ta có a+ b = c + d
=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên
cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1
c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm
Trường hợp 2: ab = cd - 1: tương tự
Ta có:
\(a+b=c+d\)
\(\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
Mà \(d=a+b-c\) nên ta có:
\(ab-c.\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2\)
\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)
\(\Rightarrow\left(a-c\right)\left(b-c\right)=1\)
\(\Rightarrow a-c=b-c\)
\(\Rightarrow a=b\)
mình mới học lớp 5 thui