K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

Đáp án D

Phương trình hoành độ giao điểm của đồ thị  f ( x )  và Ox:  a x 4 + b x 2 + c = 0 .

Để phương trình có bốn nghiệm

Gọi x 1 ,  x 2 ,  x 3 ,  x 4  lần lượt là bốn nghiệm của phương trình  a x 4 + b x 2 + c = 0  và  x 1 < x 2 < x 3 < x 4 . Không mất tính tổng quát, giả sử a > 0 .

Khi đó

Suy ra  x 1 = - - 5 b 6 a ;   x 2 = - - b 6 a ;   x 3 = - b 6 a ;   x 4 = - b 6 a .

Do đồ thị hàm số  f ( x )  nhận trục tung làm trục đối xứng  nên ta có:

Suy ra

Vậy  S 1 = S 2  hay  S 1 S 2 = 1 .

6 tháng 9 2017

Đáp án A

Phương pháp

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, x = a; x = b là  S = ∫ a b f x d x

Cách giải:

Xét phương trình hoành độ giao điểm của đồ thị  y = x 4 + x 2  với trục hoành là  x 4 + x 2 = 0 ⇔ x = 0

Diện tích hình phẳng cần tìm là 

Suy ra

6 tháng 11 2018

Đáp án B.

20 tháng 1 2019

Đáp án A

11 tháng 9 2018

Chọn D

Ta có

f(x) < 0,  ∀ x ∈ a ; c  nên |f(x)| = –f(x).

Do đó,  S 1 = - ∫ a c f x d x .

Tương tự, f(x) > 0,  ∀ x ∈ a ; c nên |f(x)| = f(x).

Do đó,  S 2 = ∫ c b f x d x .

Vậy  S = - ∫ a c f x d x + ∫ c b f x d x .

8 tháng 9 2018

1 tháng 3 2017

Chọn A

12 tháng 10 2019

Chọn A

20 tháng 6 2019

Chọn: B

Phương trình hoành độ giao điểm của

đồ thị hàm số y=f(x) và trục hoành:

Từ hình vẽ ta thấy 

Do đó 

 

Suy ra các phương án A, C, D đúng.