Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có \(y'=3x^2-6mx+3(m+6)=0\) có hai nghiệm $x_1,x_2$ chính là hoành độ hai cực trị của đồ thị hàm số. Theo hệ thức Viet:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m+6\end{matrix}\right.(1)\)
Gọi đường thẳng qua hai điểm cực trị có PT \((d):y=ax+b\)
Ta có: \(\left\{\begin{matrix} y_1=ax_1+b=x_1^3-3mx_1^2+3(m+6)x_1+1\\ y_2=ax_2+b=x_2^3-3mx_2^2+3(m+6)x_2+1\end{matrix}\right.\)
Dựa vào $(1)$ và biến đổi đơn giản:
\(\Rightarrow a(x_1-x_2)=(x_1-x_2)[x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)]\)
\(\Rightarrow a=x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)=-2m^2+2m+12\)
\(\Rightarrow 2b=y_1+y_2-a(x_1+x_2)=2m^2+12m+2\Rightarrow b=m^2+6m+1\)
Do đó PTĐT thu được: \((d):y=(-2m^2+2m+12)x+m^2+6m+1\)
Chọn C
Đường thẳng AB qua A(1; -1) và có vecto chỉ phương A B → - 2 ; 4 suy ra 1 vecto pháp tuyến là n → 2 ; 1
Phương trình đường thẳng AB là:
2(x - 1) + 1.(y + 1) = 0 hay 2x + y - 1 = 0