K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Đáp án A

Cách 1:  Tư duy tự luận

Cách 2:  Sử dụng máy tính cầm tay

25 tháng 12 2019

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 1:

\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)

\(=4\log_32+\log_35=4a+b\)

\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)

\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)

\(=-a+1+2b\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 2:

\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)

\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)

13 tháng 3 2018

helf me

27 tháng 9 2021

chịu ko bt

22 tháng 11 2017

 

 

12 tháng 3 2017

a) Ta có:

a = log 3 15 =  log 3 ( 3 , 5 )  =  log 3 3  +  log 3 5  = 1 +  log 3 5

Suy ra  log 3 5  = a – 1

b =  log 3 10  =  log 3 ( 2 , 5 )  =  log 3 2  +  log 3 5

Suy ra  log 3 2  = b −  log 3 5  = b − (a − 1) = b – a + 1

Do đó:

log 3 50 = log 3 0 , 5 ( 2 . 52 ) = 2 log 3 2  + 4 log 3 5  = 2 (b – a + 1) + 4(a − 1) = 2a + 2b − 2

b) Ta có:

log 140 63 = log 140 ( 32 . 7 ) = 2 log 140 3 + log 140 7

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đề bài suy ra:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

log 0 , 5 π . log 7 5 =  log 7 2 . log 2 3 . log 35  = cab

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

6 tháng 10 2018

Chọn A.

Ta có:

Từ đề bài suy ra

Vậy 

9 tháng 9 2019

Ta có:

log 140 63  =  log 140 3 2 . 7  = 2 log 140 3  +  log 140 7

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đề bài suy ra:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

loh 0 , 5 π . log 7 5 = log 7 2 . log 2 3 . log 35  = cab

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Câu 1 : Khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h có thể tích được tính theo công thức A. \(V=\frac{1}{3}Bh\) B. V = Bh C. V = 3Bh D. V = \(\frac{1}{2}Bh\) Câu 2 : Tính thể tích V của khối lăng trụ tam giác đều biết cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{6}\) A. \(V=3\sqrt{2}a^3\) B. V = \(\frac{3\sqrt{2}}{2}a^3\) C. V = \(\frac{3\sqrt{2}}{4}a^3\) D. V = \(\sqrt{2}a^3\) Câu 3 : Tính thể tích V của khối lăng trụ...
Đọc tiếp

Câu 1 : Khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h có thể tích được tính theo công thức

A. \(V=\frac{1}{3}Bh\) B. V = Bh C. V = 3Bh D. V = \(\frac{1}{2}Bh\)

Câu 2 : Tính thể tích V của khối lăng trụ tam giác đều biết cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{6}\)

A. \(V=3\sqrt{2}a^3\) B. V = \(\frac{3\sqrt{2}}{2}a^3\) C. V = \(\frac{3\sqrt{2}}{4}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 3 : Tính thể tích V của khối lăng trụ đứng có đáy là tam giác vuông cân có cạnh góc vuông bằng \(a\sqrt{2}\) , cạnh bên của lăng trụ bằng 5a

A. V = 5a3 B. V = \(2\sqrt{2}a^3\) C. V = \(\frac{5}{3}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 4 : Tính thể tích V của khối lăng trụ tam giác đều . Biết cạnh đáy bằng \(a\sqrt{3}\) và đường chéo của một mặt bên bằng 2a

A. V = \(\sqrt{3}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{3\sqrt{3}}{4}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 5 : Tính thể tích V của khối lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều . Biết cạnh đáy bằng \(\alpha\) và góc giữa (A'BC) với mặt phẳng (ABC) bằng 600

A. V = \(\frac{3\sqrt{3}}{8}a^3\) B. V = \(\frac{3\sqrt{3}}{4}a^3\) C. V = \(\frac{3\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

3
NV
22 tháng 8 2020

5.

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\)

\(\Rightarrow BC\perp\left(A'AM\right)\)

\(\Rightarrow\widehat{A'MA}\) là góc giữa (A'BC) và (ABC)

\(\Rightarrow\widehat{A'MA}=60^0\)

\(AM=\frac{a\sqrt{3}}{2}\Rightarrow A'A=AM.tan60^0=\frac{3a}{2}\)

\(B=\frac{a^2\sqrt{3}}{4}\Rightarrow V=B.A'A=\frac{3\sqrt{3}}{8}a^3\)

NV
22 tháng 8 2020

1.

\(V=Bh\)

2.

\(B=\frac{a^2\sqrt{3}}{4}\Rightarrow V=Bh=\frac{a^2\sqrt{3}}{4}.a\sqrt{6}=\frac{3\sqrt{2}}{4}a^3\)

3.

\(B=\frac{1}{2}\left(a\sqrt{2}\right)^2=a^2\Rightarrow V=Bh=a^2.5a=5a^3\)

4.

\(h=\sqrt{\left(2a\right)^2-\left(a\sqrt{3}\right)^2}=a\)

\(B=\frac{\left(a\sqrt{3}\right)^2\sqrt{3}}{4}=\frac{3\sqrt{3}}{4}a^2\)

\(V=Bh=\frac{3\sqrt{3}}{4}a^3\)