K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

ta có : \(A=100^2+200^2+300^2+...+1000^2\)

\(A=\left(1.100\right)^2+\left(2.100\right)^2+\left(3.100\right)^2+...+\left(10.100\right)^2\)

\(A=100^2\left(1^2+2^2+3^3+...+10^2\right)\)

\(A=10000.385=3850000\)

vậy \(A=3850000\)

21 tháng 12 2017

Ta có:A=1002+2002+3002+...+10002

=1002.12+1002.22+1002.32+...+1002.102

=1002(12+22+32+...102)

=10000.385

=3850000

=

16 tháng 7 2016

\(A=100^2+200^2+300^2+...+1000^2\)

=>\(A=100^2\left(1^2+2^2+3^2+...+10^2\right)\)

=>\(A=10000.385\)

=>\(A=3850000\)

\(A=100^2+200^2+300^2+......+1000^2\)

\(=1000^2\left(1^2+2^2+3^2+...+10^2\right)\)

\(=10000.385\\\)

\(=3850000\)

15 tháng 7 2016

A = 1002 + 2002 + 3002 + ... + 10002

A = ( 1.100 )2 + ( 2 .100 )2 + ( 3. 100 )2 + ... + ( 10 . 100 )2

A = 1002 ( 12 + 22 + ... + 102 )

A = 1002 .385

A = 3850000

15 tháng 7 2016

A = 1002 + 2002 + 3002 + ... + 10002

A = 1002 . (12 + 22 + 32 + ... + 102)

A = 10000 . 385

A = 3850000

15 tháng 10 2019

\(A=100^2+200^2+300^2+...+1000^2\)

\(A=100^2\left(1+2^2+3^3+...+10^2\right)\)

\(A=10000.385\)

\(A=3850000\)

15 tháng 10 2019

có \(1^2\cdot100^2=100^2\)

\(2^2\cdot100^2=200^2\)

\(3^2\cdot100^2=300^2\)

( từ đó tương tự)

\(\Rightarrow100^2+200^2+300^2+....+1000^2\)

\(=100^2\left(1^2+2^2+3^2+...+10^2\right)\)

mà đã có\(1^2+2^2+3^2+...+10^2=385\)

\(\Rightarrow100^2\cdot385==3850000\)

\(\Rightarrow100^2+200^2+300^2+....+1000^2=3850000\)

Ta có: \(A=100^2+200^2+300^2+...+1000^2\)

\(=100^2\cdot\left(1+2^2+3^2+...+10^2\right)\)

\(=100^2\cdot385=3850000\)

6 tháng 1 2021

3800

25 tháng 12 2015

ta có:A= 1002+2002+3002+...+10002

A=1002.(12+22+32+..102)

A=10000.385

A=3850000

2 tháng 9 2016

A = 1002 + 2002 + 3002 + ... + 10002

A = 1002.(12 + 22 + 32 + ... + 102)

A = 10000.385

A = 3850000

2 tháng 9 2016

S = 100^2+200^2+300^2+.....+1000^2 
S=100^2+(100.2)^2+(100.3)^2+....+(100.... 
S = 100^2(1^2+2^2+3^2+...+10^2) 
S=100^2.385 
S=3850000 

31 tháng 12 2015

S = 100^2+200^2+300^2+.....+1000^2 
S=100^2+(100.2)^2+(100.3)^2+....+(100.... 
S = 100^2(1^2+2^2+3^2+...+10^2) 
S=100^2.385 
S=3850000 

31 tháng 12 2015

A=1002+2002+3002+...+10002=(100*1)2+(100*2)2+(100*3)2+...+(100*10)2

=1002*12+1002*22+...+1002*102

=1002(12+22+...+102)=10 000*385=3 850 000

17 tháng 12 2016

\(A=100^2+200^2+300^2+...+1000^2\)

\(A=\left(100\cdot1\right)^2+\left(100\cdot2\right)^2+\left(100\cdot3\right)^2+...+\left(100\cdot10\right)^2\)

\(A=100^2\cdot1^2+100^2\cdot2^2+100^2\cdot3^2+...+100^2\cdot10^2\)

\(A=100^2\left(1^2+2^2+3^2+...+10^2\right)\)

\(A=10000\cdot385\)

\(A=3850000\)

14 tháng 7 2017

Cách này có j sai các bạn bảo nhé

12+22+32+...+102=385

=>1+4+9+...+100=385

mà A=1002+2002+3002+...+10002

=10000+40000+90000+...+1000000

==>(10000+40000+90000+...+1000000) : (1+4+9+...+100)

=10000

==>A=10000 *385

A=3850000

26 tháng 12 2017

A = 1002+ 2002+ 3002+ ... + 10002

A = 3850000

ĐS : 3850000

26 tháng 12 2017

\(A=100^2+200^2+300^2+...+1000^2\)

\(A=100\left(1^2+2^2+3^2+...+10^2\right)\)

Mà \(1^2+2^2+3^2+...+10^2=385\)

\(A=100.385\)

\(A=38500\)