K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

\(\lim\limits_{x\rightarrow0}\frac{\sqrt{3x+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{3x}{x\left(\sqrt{3x+1}+1\right)}=\lim\limits_{x\rightarrow0}\frac{3}{\sqrt{3x+1}+1}=\frac{3}{2}\)

\(\Rightarrow a^2+b^2=3^2+2^2=13\)

8 tháng 11 2023

\(4\sqrt{2}x\) ạ

25 tháng 6 2018

5 tháng 6 2017

Chọn A

Ta có: 

Do đó, . Vậy 

17 tháng 1 2021

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).

Từ đó a = 5; b = 4 nên a - b = 1.

NV
22 tháng 1

\(a+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}=0\) có nghiệm \(x=1\)

\(\Rightarrow a+\dfrac{2}{\sqrt{1}}-\dfrac{6}{\sqrt{1}}=0\Rightarrow a=4\)

\(4+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}=3\left(2-\dfrac{x+1}{\sqrt{x}}\right)+\left(\dfrac{x+1}{\sqrt{x^2-x+1}}-2\right)\)

\(=-3\left(\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x+1+2\sqrt{x}\right)}\right)+\dfrac{-3\left(x-1\right)^2}{\sqrt{x^2-x+1}\left(x+1-2\sqrt{x^2-x+1}\right)}\)

Rút gọn với \(\left(x-1\right)^2\) bên ngoài rồi thay dố là được

8 tháng 1 2018

14 tháng 10 2018

11 tháng 12 2023

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x+1}-2}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{3x+1-4}{\sqrt{3x+1}+2}\cdot\dfrac{1}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)\left(\sqrt{3x+1}+2\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{3}{\left(x+1\right)\left(\sqrt{3x+1}+2\right)}=\dfrac{3}{\left(1+1\right)\left(\sqrt{3+1}+2\right)}\)

\(=\dfrac{3}{2\cdot4}=\dfrac{3}{8}\)

=>a=3;b=8

=>a2+b=9+8=17