Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có một nghiệm là -1.
\(\Rightarrow-2\left(m+1\right)=m-3-m-3\)
\(\Leftrightarrow m=2\)
Phương trình trở thành:
\(-x^2-6x-5=0\)
\(\Leftrightarrow-\left(x+1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_2=-5\end{matrix}\right.\)
Vậy nghiệm còn lại là \(x_2=-5\).
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
b: Thay x=-5 vào pt, ta được:
\(m+25+65=0\)
hay m=-90
Theo đề, ta có: \(x_1+x_2=13\)
nên \(x_2=18\)
c: Thay x=-3 vào pt, ta được:
\(18+3\left(m+4\right)+m=0\)
=>4m+30=0
hay m=-15/2
Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)
hay \(x_2=-1.25\)
Lời giải:
a) Khi $m=1$ thì pt trở thành:
$x^2-2x-5=0$
$\Leftrightarrow (x-1)^2=6$
$\Rightarrow x=1\pm \sqrt{6}$
b) Để $x_1=3$ là nghiệm của pt thì:
$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$
Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$
c)
$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$
Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$
Khi đó:
Để $x_1^2+x_2^2=13$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$
$\Leftrightarrow (2m)^2-2(2m-7)=13$
$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$
d)
$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$
$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$
\(x^2+mx+4=0\left(1\right)\)
+)Vì phương trình có 1 nghiệm là -1, do đó theo tính chất nhấm nghiệm thì có \(a-b+c=0\)
⇒ nghiệm còn lại là \(-4\).
+) Để phương trình có nghiệm thì \(\Delta\ge0\) hay \(m^2-16\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-4\\m\ge4\end{matrix}\right.\)
Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=4\end{matrix}\right.\)
Có : \(x_1^2+x^2_2=6m-13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6m-13\)
\(\Leftrightarrow m^2-8=6m-13\)
\(\Leftrightarrow m^2-6m+5=0\Leftrightarrow\left(m-1\right)\left(m-5\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=5\left(n\right)\end{matrix}\right.\)
Vậy...
Thay x = 3 vào phương trình:
m.32 – 4(m – 1).3 + 4m + 8 = 0 ⇔ m = −20
Với m = −20 ta có phương trình
−20x2 + 84x – 72 = 0 ⇔ 5x2 – 21x + 18 = 0
Phương trình trên có ∆ = (−21)2 – 4.5.18 = 81 > 0
⇒ Δ = 9 nên có hai nghiệm phân biệt
x = 21 + 9 2.5 = 3 x = 21 − 9 2.5 = 6 5
Vậy nghiệm còn lại của phương trình là x = 6 5
Đáp án cần chọn là: D
Ta có pt: \(mx^2-3\left(m+1\right)x+m^2-13m-4=0\)
Do pt có nghiệm là x = -2 nên thay vào pt ta có:
\(m\cdot\left(-2\right)^2-3\left(m+1\right)\cdot-2+m^2-13m-4=0\)
\(\Leftrightarrow4m+6\left(m+1\right)+m^2-13m-4=0\)
\(\Leftrightarrow6m+6+m^2-9m-4=0\)
\(\Leftrightarrow m^2-3m+2=0\)
\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{3+\sqrt{1}}{2}=2\\m_2=\dfrac{3-\sqrt{1}}{2}=1\end{matrix}\right.\)
Nếu m = 1 thì pt là:
\(x^2-3\left(1+1\right)x+1^2-13\cdot1-4=0\)
\(\Leftrightarrow x^2-6x-16=0\)
Theo vi-et: \(x_1+x_2=-\dfrac{-6}{1}\Rightarrow x_2=6-x_2=8\)
Nếu m = 2 thì pt là:
\(2x^2-3\cdot\left(2+1\right)x+2^2-13\cdot2-4=0\)
\(\Leftrightarrow2x^2-9x-26=0\)
Theo vi-et: \(x_1+x_2=-\dfrac{-9}{2}\Leftrightarrow x_2=\dfrac{9}{2}+2=\dfrac{13}{2}\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=5\)
hay \(x_2=4\)
Phương trình có nghiệm x=1.
\(\Rightarrow1-5+m-7=0\)
\(\Leftrightarrow m=11\)
Phương trình trở thành:
\(x^2-5x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\x_2=4\end{matrix}\right.\)
Vậy nghiệm còn lại là \(x_2=4\).