K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

Answer:

\(B=\frac{\cos^2a-3\sin^2a}{3-\sin^2a}\)

Có:

\(\tan a=3\)

\(\Leftrightarrow\frac{\sin a}{\cos a}=3\)

\(\Leftrightarrow\sin a=3\cos a\)

Thay vào B

\(B=\frac{\cos^2a-3\left(3\cos a\right)^2}{3\left(\sin^2a+\cos^2a\right)-\left(3\cos a\right)^2}\)

\(=\frac{\cos^2a-27\cos^2a}{3\left(3\cos a\right)^2+3\cos^2a-9\cos^2a}\)

\(=\frac{-26\cos^2a}{21\cos^2a}\)

\(=-\frac{26}{21}\)

22 tháng 8 2020

\(1+tan^2a=\frac{1}{cos^2a}\)       

\(1+3^2=\frac{1}{cos^2a}\) 

\(10=\frac{1}{cos^2a}\)  

\(cos^2a=\frac{1}{10}\)          

\(cosa=\pm\sqrt{\frac{1}{10}}\) 

\(sin^2a+cos^2a=1\)   

\(sin^2a+\frac{1}{10}=1\)   

\(sin^2a=\frac{9}{10}\)   

\(sina=+\sqrt{\frac{9}{10}}\) 

Vì tan dương nên có hai trường hợp : 

TH1 : cả sin và cos cùng dương : 

\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\) 

\(=\frac{\sqrt{\frac{9}{10}}\cdot\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\) 

\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)    

\(=\frac{3}{8}\)   

TH2 : cả sin và cos cùng âm 

\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)                   

\(=\frac{-\sqrt{\frac{9}{10}}\cdot-\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)                 

\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)      

\(=\frac{3}{8}\)            

23 tháng 10 2023

\(tana=\sqrt{3}\)

=>\(\dfrac{sina}{cosa}=\sqrt{3}\)

=>\(sina=\sqrt{3}\cdot cosa\)

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+3=4\)

=>\(cos^2a=\dfrac{1}{4}\)

=>\(cosa=\dfrac{1}{2}\)

=>\(sina=\dfrac{\sqrt{3}}{2}\)

\(A=\dfrac{sin^2a-cos^2a}{sina\cdot cosa}\)

\(=\dfrac{\dfrac{3}{4}-\dfrac{1}{4}}{\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{2}}=\dfrac{2}{4}:\dfrac{\sqrt{3}}{4}=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)

15 tháng 7 2018

b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)

=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)

=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)

=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm

20 tháng 9 2017
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân
19 tháng 8 2021

\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\frac{\sin^2a}{\cos^2a}-1}=\)

\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)

\(=\frac{\sin^2a\left(\sin a+\cos a\right)-\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)

\(=\frac{\left(\sin a+\cos a\right)\left(\sin^2a-\cos^2a\right)}{\sin^2a-\cos^2a}=\sin a+\cos a\left(dpcm\right)\)

12 tháng 8 2018

a, \(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)

\(=\tan^2\alpha\left(\cos^2\alpha+\cos^2\alpha+\sin^2\alpha-1\right)\)

\(=\tan^2\alpha\left(\cos^2\alpha+1-1\right)\)

\(=\tan^2\alpha.\cos^2\alpha=1\)

b, \(\sin\alpha-\sin\alpha.\cos^2\alpha\)

\(=\sin\alpha\left(1-\cos^2\alpha\right)\)

\(=\sin\alpha.\sin^2\alpha\)

13 tháng 8 2018

bn ơi lm j có công thức \(\tan^2a\times\cos^2a=1\) đâu

1 tháng 11 2018

3. Cho tam giác ABC vuông tại A . Vẽ hình và thiết lập các hệ thúc tính TSLG của góc B từ đó suy ra các hệ thức tính TSLG góc C

15 tháng 11 2022

Bài 2:

\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)

\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)

=1