K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

Đáp án C

Ta có 

Do đó số phức z có phần thực bằng 14 và phần ảo bằng  2 5

NV
10 tháng 4 2022

Đặt \(z=x+yi\Rightarrow w=\dfrac{1}{\sqrt{x^2+y^2}-x-yi}=\dfrac{\sqrt{x^2+y^2}-x+yi}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}=\dfrac{1}{8}\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{2x^2+2y^2-2x\sqrt{x^2+y^2}}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}\left(\sqrt{x^2+y^2}-x\right)}=\dfrac{1}{4}\Rightarrow\dfrac{1}{\sqrt{x^2+y^2}}=\dfrac{1}{4}\)

\(\Rightarrow x^2+y^2=16\)

\(\Rightarrow\) Tập hợp \(z_1;z_2\) là đường tròn tâm O bán kính \(R=4\)

Gọi M, N lần lượt là điểm biểu diễn \(z_1;z_2\), do \(\left|z_1-z_2\right|=2\Rightarrow MN=2\)

Gọi \(P\left(0;5\right)\) và Q là trung điểm MN

\(\Rightarrow P=MP^2-NP^2=\overrightarrow{MP}^2-\overrightarrow{NP}^2=\left(\overrightarrow{MP}-\overrightarrow{NP}\right)\left(\overrightarrow{MP}+\overrightarrow{NP}\right)\)

\(=2\overrightarrow{MN}.\overrightarrow{PQ}=2\overrightarrow{MN}\left(\overrightarrow{PO}+\overrightarrow{OQ}\right)=2\overrightarrow{MN}.\overrightarrow{PO}=2MN.PO.cos\alpha\)

Trong đó \(\alpha\) là góc giữa \(MN;PO\)

Do MN, PO có độ dài cố định \(\Rightarrow P_{max}\) khi \(cos\alpha_{max}\Rightarrow\alpha=0^0\Rightarrow MN||PO\)

Mà MN=2 \(\Rightarrow M\left(\sqrt{15};-1\right);N\left(\sqrt{15};1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PM}=\left(\sqrt{15};-6\right)\\\overrightarrow{PN}=\left(\sqrt{15};-4\right)\end{matrix}\right.\)

\(\Rightarrow P_{max}=PM^2-PN^2=15+36-\left(15+16\right)=20\)

NV
10 tháng 4 2022

undefined

26 tháng 5 2019

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Đặt $z=a+bi$ ( $a,b\in\mathbb{R}$)

Theo bài ra ta có:

\(10(a+bi)+2i-3=(4-5i)(a+bi)+3i\Leftrightarrow (6a-5b-3)+i(6b-1+5a)=0\)

\(\Rightarrow \left\{\begin{matrix} 6a-5b-3=0\\ 5a+6b-1=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{23}{61}\\ b=\frac{-9}{61}\end{matrix}\right.\). Do đó số \(z=\frac{23}{61}-\frac{9i}{61}\)

Vậy:

-Phần thực: $a=\frac{23}{61}$

-Phần ảo: $b=\frac{-9}{61}$

-Số phức liên hợp \(\overline{z}=a-bi=\frac{23}{61}+\frac{9i}{61}\)

-Mô đun: \(|z|=\sqrt{a^2+b^2}=\frac{\sqrt{610}}{61}\)

30 tháng 9 2019
25 tháng 8 2017

Chọn C.

7 tháng 4 2019

a) Đường phân giác của góc phần tư thứ nhất và góc pần tư thứ ba.

b) Đường phân giác của góc phần tư thứ hai và góc phần tư thứ tư.

c) Đường thẳng y = 2x + 1

d) Nửa đường tròn tâm O bán kính bằng 1, nằm bên phải trục Oy.

 
12 tháng 3 2018

Đáp án B.

5 tháng 8 2019

Đáp án A.

10 tháng 4 2021

cho em hỏi tại sao ra được dấu tương đương thứ 2 vậy ạ