Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bộ ba độ dài nào sau đây là độ dài của ba cạnh trong một tam giác vuông?
A. 6cm, 8cm, 10cm.
B. 11cm, 12cm, 13cm.
C. 7cm, 7cm, 9cm.
D. 4cm, 5cm, 6cm.
* Giải thích: Áp dụng định lí Pytago đảo
\(\sqrt{6^2+8^2}=10\) \(\Rightarrow\) Tam giác này vuông
Bộ ba độ dài nào sau là độ dài ba cạnhtrong một tam giác vuông:
6cm, 8cm, 10cm.
a) Vì 7 + 8 > 11
Nên a là một tam giác theo bất đẳng thức tam giác
b) Vì 7 + 9 = 16 không thỏa mãn bất đẳng thức tam giác nên b không phải là tam giác
c) Vì 8 + 9 > 16
Nên c là một tam giác theo bất đẳng thức tam giác
a) \(13^2=12^2+5^2\)
Vậy 5cm, 13cm, 12cm là cạnh của tam giác vuông
b) \(9^2\ne5^2+7^2\)
Vậy 9cm, 5cm, 7cm không là cạnh của tam giác vuông
c) \(10^2\ne5^2+7^2\)
Vậy 10cm, 5cm, 7cm không là cạnh của tam giác vuông
d) \(20^2=16^2+12^2\)
Vậy 20cm, 16cm, 12cm là cạnh của tam giác vuông
Chọn `\bb C` vì:
Ta có: `5^2+12^2=169`
Mà `13^2= 169`
`=>5^2+12^2=13^2`
`=>` Tam giác này vuông (Đ/l Py-ta-go đảo)
`A, 7 cm, 8cm, 11 cm.`
Theo bất đẳng thức tam giác: `7+8 > 11 > 8-7`
`->` Bộ `3` độ dài này có thể là bộ ba cạnh của `1` tam giác.
`B, 7cm, 9cm, 16cm`
Theo bất đẳng thức tam giác: `7+9 = 16 > 9-7`
`->` Bộ `3` độ dài này không thể là độ dài của `1` tam giác.
`C, 8cm, 9cm, 16cm`
Theo bất đẳng thức tam giác: `8+9 > 16 > 9-8`
`->` Bộ `3` độ dài này có thể là độ dài trong `1` tam giác.
`-> A, C`
`\color{blue}\text {#DuyNam}`
Giả sử độ dài cạnh thứ ba là x ( cm ).
Theo hệ quả về bất đẳng thức tam giác ta có:
10 – 2 < x < 10 + 2
Hay 8 < x < 12
Trong các phương án chỉ có phương án D: 9cm thỏa mãn.
Chọn đáp án (D) 9cm.
Vì 6+8=14>10 không thỏa mãn bất đẳng thức tam giác. Chọn A
a