K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Vì đường thẳng \(y = x\);\(y = x + 2\) song song với nhau và \(y =  - x\);\(y =  - x + 2\) song song với nhau nên tứ giác \(OABC\) là hình bình hành.

Lại có \(OC;OA\) là đường chéo của hình vuông có độ dài cạnh là 1 nên \(OC = OA\). Do đó, tứ giác \(OABC\) là hình thoi.

Lại có \(OC;OA\) là đường chéo của hình vuông nên cũng là đường phân giác. Do đó, \(\widehat {COB} = \widehat {AOB} = 45^\circ  \Rightarrow \widehat {COA} = \widehat {COB} + \widehat {AOB} = 45^\circ  + 45^\circ  = 90^\circ \)

Hình thoi \(OABC\) có góc \(\widehat {COA} = 90^\circ \) nên tứ giác \(OABC\) là hình vuông.

17 tháng 4 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem hình bs.52.

- Các tam giác ADB, ACB, DAC, DBC có diện tích bằng nhau vì cùng bằng nửa diện tích hình bình hành đã cho.

- Các tam giác OAD, OCB, ODC, OBA có diện tích bằng nhau vì cùng bằng một phần tư diện tích hình bình hành đã cho.

4 tháng 4 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:  ∠ (AOB) và ∠ (COD) đối đỉnh nên E, O, G thẳng hàng

∠ (BOC) và  ∠ (AOD) đối đỉnh nên F, O, H thẳng hàng

Xét ∆ BEO và  ∆ BFO:

(EBO) = (FBO) (tính chất hình thoi)

OB cạnh chung

∠ (EOB) =  ∠ (FOB) = 45 0  (gt)

Do đó:  ∆ BEO =  ∆ BFO (g.c.g)

⇒ OE = OF (1)

Xét  ∆ BEO và  ∆ DGO:

∠ (EBO) = (GDO) (so le trong)

OB = OD(tính chất hình thoi)

∠ (EOB) = (GOD) (đối đỉnh)

Do đó:  ∆ BEO =  ∆ DGO (g.c.g)

⇒ OE = OG (2)

Xét AEO và AHO:

∠ (EAO) = (HAO) (tính chất hình thoi)

OA cạnh chung

∠ (EOA) =  ∠ (HOA) =  45 0  (gt)

Do đó:  ∆ AEO = AHO (g.c.g)

⇒ OE = OH (3)

Từ (1), (2) và (3) suy ra: OE = OF = OG = OH hay EG = FH

nên tứ giác EFGH là hình chữ nhật (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)

OE ⊥ OF (tính chất tia phân giác của hai góc kề bù)

hay EG ⊥ FH

Vậy hình chữ nhật EFGH là hình vuông.

3 tháng 5 2017

Ta có:

* SADB=SACB=SDAC=SDBC ( cùng bằng \(\dfrac{1}{2}.S_{hbh}\) )

* SOAD=SOCB=SODC=SOBA (cùng bằng \(\dfrac{1}{4}.S_{hbh}\))

30 tháng 6 2017

Hình vuông

25 tháng 7 2017

Hình vuông

HQ
Hà Quang Minh
Giáo viên
28 tháng 1

- Em cắt bốn tứ giác như nhau bằng giấy rồi thực hiện các bước theo yêu cầu bài toán.

Ta có thể ghép bốn tứ giác khít nhau như Hình 3.1b.

- Nhận xét: Bốn góc tại điểm chung của bốn tứ giác được ghép khít nhau.

Khi đó: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

29 tháng 11 2019

A B C D E F P Q O

Quá nhiều cách để chứng minh. 

a. CE //BD 

    BE // DC ( vì DC // AB )

=> DCEB là hình bình hành 

=> CE = BD 

Mà BD =AC ( vì ABCD là hv)

=> CE = AC (1)

BD vuông AC ( vì ABCD là hình vuông )

mà CE // BD 

=> CE vuông AC (2)

Từ (1); (2) => Tam giác ACE là tam giác vuông cân.

b) F đối xứng với AB qua O

=> AB là đường trung trực của OF

=> BF =  BO và AO = AF 

Mà OA = OB ( ABCD là hình bình hành  vs O là giao 2 đường chéo )

=> BF = BO = AO = AF.

=> AOBF là  hình thoi

Mặt khác ^AOB = 90^o

=> AOBF là hình vuông

c.  APCQ là hình thoi 

=>đường thẳng PQ là đường trung trực của đoạn AC  (3)

Mặt khác ABCD là hình vuông => đường thẳng BD là đường trung trực của đoạn AC(4)

Từ (3); (4) => Đường thẳng PQ trùng đường thẳng BD => P; D; B; Q thẳng hàng.

30 tháng 8 2015

A B C D O

+) Tam giác AOB và AOD có chung chiều cao hạ từ A xuống BD => S(AOB)/ S(AOD)  = OB/OD

+) Tam giác COB và COD có chung chiều cao hạ từ C xuống BD => S(COB)/ S(COD) = OB/OD

=> S(AOB)/S(AOD) = S(COB)/ S(COD)

=> S(AOB). S(COD) = S(AOD).S(COB)

=> S(AOB).S(BOC).S(COD). (DOA) = [S(AOD).S(COB)]2 là số chính phương Vì S(AOD) và S(COB) nguyên 

=> đpcm