K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

\(B=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times...\times\dfrac{100}{99}\)

\(B=\dfrac{3.4.5.....100}{2.3.4.....99}\)

\(B=\dfrac{100}{2}\)

\(B=50\)

22 tháng 3 2017

hình như sai đề bài thì phải?

26 tháng 10 2017

\(\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right).0\\ =0\)

\(=\left(1-\dfrac{1}{99}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)

\(=\left(-\dfrac{1}{99}-\dfrac{1}{98}\right)\cdot\dfrac{3}{10}=\dfrac{-197\cdot3}{9702\cdot10}=\dfrac{-197}{32340}\)

1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)

\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)

2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)

\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)

3 tháng 4 2017

\(\dfrac{1}{12}\). \(\dfrac{37}{39}+\dfrac{1}{12}.\dfrac{2}{39}+\dfrac{1}{4}\)

=\(\dfrac{1}{12}.\left(\dfrac{37}{39}+\dfrac{2}{39}\right)+\dfrac{1}{4}\)

=\(\dfrac{1}{12}.1+\dfrac{1}{4}\)

=\(\dfrac{13}{12}+\dfrac{1}{4}\)

=\(\dfrac{16}{12}\)

25 tháng 3 2017

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}.\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}\right)}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)

15 tháng 7 2017

Edogawa Conan !hình như là thiếu

1: \(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\)

=1/2*10/39

=5/39

2: \(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}\right)=\dfrac{5}{2}\cdot\dfrac{10}{11}=\dfrac{50}{22}=\dfrac{25}{11}\)

6 tháng 5 2022

Đặt biểu thức trong ngoặc đơn là B

\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\dfrac{1}{5^{100}}\Rightarrow B=\dfrac{1}{4}\left(1-\dfrac{1}{5^{100}}\right)\)

\(\Rightarrow A=4.5^{100}.\dfrac{1}{4}\left(\dfrac{5^{100}-1}{5^{100}}\right)+1=\)

\(=5^{100}\)

25 tháng 3 2017

\(\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}+\dfrac{\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}}=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}\right)}\)

\(=\dfrac{2}{3}+\dfrac{1}{3}\)

\(=1\)