K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

`1,`

`x^2 - 9 = 0`

`<=> x^2 = 0 + 9`

`<=> x^2 = 9`

`<=> x^2 = (+-3)^2`

`<=> x = +-3`

Vậy, `S = {3; -3}`

`2,`

`25 - x^2 = 0`

`<=> x^2 = 25 - 0`

`<=> x^2 = 25`

`<=> x^2 = (+-5)^2`

`<=> x = +-5`

Vậy,` S= {5; -5}`

`3,`

`-x^2 + 36 = 0`

`<=> -x^2 = 0 - 36`

`<=> -x^2 = -36`

`<=> x^2 = 36`

`<=> x^2 = (+-6)^2`

`<=> x = +-6`

Vậy, `S= {6; -6}`

`4,`

`4x^2 - 4 = 0`

`<=> 4x^2 = 0+4`

`<=> 4x^2 = 4`

`<=> x^2 = 4 \div 4`

`<=> x^2 = 1`

`<=> x^2 = (+-1)^2`

`<=> x = +-1`

Vậy, `S= {1; -1}`

`@` `\text {Kaizuu lv uuu}`

7 tháng 7 2023

Lớp \(8\) thì nên Vậy \(S=\left\{...\right\}\) nha em ☕

7 tháng 7 2023

\(5,4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{3;-3\right\}\)

\(7,\left(3x+1\right)^2-16=0\\ \Leftrightarrow\left(3x+1\right)^2-4^2=0\\ \Leftrightarrow\left(3x+1-4\right)\left(3x+1+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

Vậy \(S=\left\{1;-\dfrac{5}{3}\right\}\)

\(8,\left(2x-3\right)^2-49=0\\ \Leftrightarrow\left(2x-3\right)^2-7^2=0\\ \Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{-2;5\right\}\)

7 tháng 7 2023

Câu 6 đâu ạ?

7 tháng 7 2023

\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)

\(10,\left(x+3\right)^2-x^2=45\)

\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)

Vậy \(S=\left\{6\right\}\)

\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)

\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)

3 tháng 10 2023

1, \(x^2\) - 9 = 0

 (\(x\) - 3)(\(x\) + 3) = 0

 \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

 vậy \(x\) \(\in\) {-3; 3}

 

  

 

3 tháng 10 2023

5, 4\(x^2\) - 36 = 0

    4.(\(x^2\) - 9) = 0

       \(x^2\) - 9 = 0

       (\(x\) - 3)(\(x\) + 3) = 0

        \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

        \(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-3; 3}

 

 

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

21 tháng 12 2018

1) \(2x\left(x-3\right)+5x-15=0\)

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-5}{2}\end{matrix}\right.\)

2) \(x\left(2x-7\right)-4x+14=0\)

\(x\left(2x-7\right)-2\left(2x-7\right)=0\)

\(\left(2x-7\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)

3) \(x^2-12x+36=0\)

\(\left(x-6\right)^2=0\)

\(x-6=0\)

\(x=6\)

4) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)

\(\left(x^3+3^3\right)-x\left(x^2-1\right)-27=0\)

\(x^3+27-x^3+x-27=0\)

\(x=0\)

30 tháng 7 2019

\(\left(y-2\right)\left(y-3\right)+\left(y-2\right)-1=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+\left(y-3\right)=0\)

\(\Leftrightarrow\left(y-3\right)^2=0\)

\(\Leftrightarrow y=3\)

\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)

30 tháng 7 2019

Bài làm

Vì ( y - 2 ) . ( y - 3 ) + ( y - 2 ) - 1 = 0

=> ( y - 2 ) = 0 hoặc ( y - 3 ) + ( y - 2 ) - 1 = 0

=> y = 2 hoặc y = 3 

Vậy y = 2 hoặc y = 3

~ Mấy câu còn lại làm tương tự. Làm theo mẫu câu a . b = 0 , => a = 0 hoặc b = 0. ~
# Chúc bạn học tốt # 

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

17 tháng 9 2018

\(a)\)\(x^3-x^2-x+1=0\)

\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

Vậy \(x=1\) hoặc \(x=-1\)

Chúc bạn học tốt ~ 

17 tháng 9 2018

a) x3-x2-x+1 = 0 \(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)\(\Leftrightarrow x^2-1=0\)hoặc x-1=0 

\(\Leftrightarrow x=1\)