Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5,4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{3;-3\right\}\)
\(7,\left(3x+1\right)^2-16=0\\ \Leftrightarrow\left(3x+1\right)^2-4^2=0\\ \Leftrightarrow\left(3x+1-4\right)\left(3x+1+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{5}{3}\right\}\)
\(8,\left(2x-3\right)^2-49=0\\ \Leftrightarrow\left(2x-3\right)^2-7^2=0\\ \Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;5\right\}\)
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
5, 4\(x^2\) - 36 = 0
4.(\(x^2\) - 9) = 0
\(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 3}
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
1) \(2x\left(x-3\right)+5x-15=0\)
\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\left(2x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-5}{2}\end{matrix}\right.\)
2) \(x\left(2x-7\right)-4x+14=0\)
\(x\left(2x-7\right)-2\left(2x-7\right)=0\)
\(\left(2x-7\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)
3) \(x^2-12x+36=0\)
\(\left(x-6\right)^2=0\)
\(x-6=0\)
\(x=6\)
4) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)
\(\left(x^3+3^3\right)-x\left(x^2-1\right)-27=0\)
\(x^3+27-x^3+x-27=0\)
\(x=0\)
\(\left(y-2\right)\left(y-3\right)+\left(y-2\right)-1=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+\left(y-3\right)=0\)
\(\Leftrightarrow\left(y-3\right)^2=0\)
\(\Leftrightarrow y=3\)
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
\(a)\)\(x^3-x^2-x+1=0\)
\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=-1\)
Chúc bạn học tốt ~
`@` `\text {Ans}`
`\downarrow`
`1,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`2,`
`25 - x^2 = 0`
`<=> x^2 = 25 - 0`
`<=> x^2 = 25`
`<=> x^2 = (+-5)^2`
`<=> x = +-5`
Vậy,` S= {5; -5}`
`3,`
`-x^2 + 36 = 0`
`<=> -x^2 = 0 - 36`
`<=> -x^2 = -36`
`<=> x^2 = 36`
`<=> x^2 = (+-6)^2`
`<=> x = +-6`
Vậy, `S= {6; -6}`
`4,`
`4x^2 - 4 = 0`
`<=> 4x^2 = 0+4`
`<=> 4x^2 = 4`
`<=> x^2 = 4 \div 4`
`<=> x^2 = 1`
`<=> x^2 = (+-1)^2`
`<=> x = +-1`
Vậy, `S= {1; -1}`
`@` `\text {Kaizuu lv uuu}`
Lớp \(8\) thì nên Vậy \(S=\left\{...\right\}\) nha em ☕