Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 2Na + 1C + 3X = CaCO3 + 3H2
\(\Rightarrow\left(2\times23\right)+\left(1\times12\right)+3X=100+\left(3\times2\right)\)
\(\Rightarrow46+12+3X=106\)
\(\Rightarrow X=\dfrac{106-\left(46+12\right)}{3}=16\) (đvC)
Vậy X là nguyên tố Oxi (O)
b) Ta có: 2Al + 3X + 12O = 19 \(\times\) H2O
\(\Rightarrow\left(2\times27\right)+3X+\left(12\times16\right)=19\times18\)
\(\Rightarrow54+3X+192=342\)
\(\Rightarrow X=\dfrac{342-\left(54+192\right)}{3}=32\) (đvC)
Vậy X là nguyên tố Lưu huỳnh (S).
P(x) = ax3 + bx2 + cx + d
P(0) = a . 03 + b . 02 + c . 0 + d = d
=> d = 10
P(1) = a . 13 + b . 12 + c . 1 + d = a + b + c + 10
=> a + b + c + 10 = 12
=> a + b + c = 2
P(2) = a . 23 + b . 22 + c . 2 + d = 8a + 4b + 2c + d = 2(4a + 2b + c) + 10
=> 2(4a + 2b + c) + 10 = 4
=> 4a + 2b + c = - 3
mà a + b + c = 2
=> 3a + b = - 5
=> 3a = - b - 5
=> 9a = - 3b - 15
P(3) = a . 33 + b . 32 + c . 3 + d = 27a + 9b + 3c + 10 = 3(9a + 3b + c) + 10
=> 3(9a + 3b + c) + 10 = 1
=> 3(9a + 3b + c) = - 9
=> 9a + 3b + c = - 3
=> - 3b - 15 + 3b + c = - 3
=> c - 15 = - 3
=> c = 12
=> a + b + 12 = 2
=> a + b = - 10
mà 3a + b = - 5
=> 2a = 5
=> a = 2,5
=> 2,5 + b = - 10
=> b = - 12,5
Vậy P(x) = 2,5x3 - 12,5x2 + 12x + 10
AN TRAN DOAN
P(x) = ax3 + bx2 + cx + d
P(0) = a . 03 + b . 02 + c . 0 + d = d
=> d = 10
P(1) = a . 13 + b . 12 + c . 1 + d = a + b + c + 10
=> a + b + c + 10 = 12
=> a + b + c = 2
P(2) = a . 23 + b . 22 + c . 2 + d = 8a + 4b + 2c + d = 2(4a + 2b + c) + 10
=> 2(4a + 2b + c) + 10 = 4
=> 4a + 2b + c = - 3
mà a + b + c = 2
=> 3a + b = - 5
=> 3a = - b - 5
=> 9a = - 3b - 15
P(3) = a . 33 + b . 32 + c . 3 + d = 27a + 9b + 3c + 10 = 3(9a + 3b + c) + 10
=> 3(9a + 3b + c) + 10 = 1
=> 3(9a + 3b + c) = - 9
=> 9a + 3b + c = - 3
=> - 3b - 15 + 3b + c = - 3
=> c - 15 = - 3
=> c = 12
=> a + b + 12 = 2
=> a + b = - 10
mà 3a + b = - 5
=> 2a = 5
=> a = 2,5
=> 2,5 + b = - 10
=> b = - 12,5
Vậy P(x) = 2,5x3 - 12,5x2 + 12x + 10
Sửa đề:
(3x - 1)(3x + 1) = 9x2
<=> 9x2 - 1 = 9x2
<=> 0 = 1 (Vô lí)
Vậy nghiệm của PT là \(S=\varnothing\)