Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(x\) là ước nguyên tố của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)
\(\Rightarrow a.b⋮x\)và \(a+b⋮x\)
Vì \(a.b⋮x\Rightarrow a⋮x\)hoặc \(b⋮x\)
Vì \(a+b⋮x\Rightarrow a⋮x\)và \(b⋮x\Rightarrow x\inƯC\left(a,b\right)\)
Mà nếu \(a\)và \(b\)nguyên tố cùng nhau ( hay \(\left(a,b\right)=1\)) thì \(ƯCLN\left(a,b\right)=1\)
\(\Rightarrow x=1\)không phải là số nguyên tố trái với giả thiết đặt ra
Do đó không tồn tại ước nguyên tố \(x\)của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)
Do đó \(a.b\)và \(a+b\)nguyên tố cùng nhau
\(\left(a.b,a+b\right)=1\)( đpcm )
/ Sai thì bỏ qua nha Hiro /
Gọi ƯCLN(7n+10;5n+7)=a
Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a
=> 35n+50 chia hết cho a (1)
5n+7 chia hết cho a => 7(5n+7) chia hết cho a
=> 35n + 49 chia hết cho a (2)
Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a
=> 1 chia hết cho a
=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
tick ủng hộ nha
Lời giải:
Phản chứng. Giả sử 2 số đó không nguyên tố cùng nhau.
Gọi $d=ƯCLN(5a+2b, 7a+3b), d> 1$
$\Rightarrow 5a+2b\vdots d; 7a+3b\vdots d$
$\Rightarrow 5(7a+3b)-7(5a+2b)\vdots d$
$\Rightarrow b\vdots d$
Mà $5a+2b\vdots d$ nên $5a\vdots d$
Vì $(a,b)=1$ nên $(a,d)=1$
$\Rightarrow 5\vdots d$. Mà $d>1$ nên $d=5$
$5a+2b\vdots 5\Rightarrow 2b\vdots 5\Rightarrow b\vdots 5$
$$7a+3b\vdots 5; b\vdots 5\Rightarrow 7a\vdots 5\Rightarrow a\vdots 5$
$\Rightarrow a,b\vdots 5$ (vô lý)
Vậy điều giả sử là sai. Tức 2 số đó ntcn.
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
gọi d=2a+1 và 6a+4
suy ra 2a+1 chia hết cho d; 6a+4 chia hết cho d
suy ra : (6a+4)-(2a+1) chia hết cho d
suy ra (6a+4)-3(2a+1) chia hết cho d
suy ra 1 chia hết cho d suy ra d=1
vậy 2a+1 và 6a+4 là hai số nguyên tố cùng nhau
đúng rồi đấy nhớ tick cho mình nhé!
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^