Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:
\(A=2x^2-6x\)
\(A=2x^2-6x+\dfrac{9}{2}-\dfrac{9}{2}\)
\(A=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(A=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Vì \(2\left(x+\dfrac{3}{2}\right)^2\ge0\) nên \(A=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" xảy ra khi:
\(x=-\dfrac{3}{2}\)
\(2x^2-6x\)
\(=2.\left(x^2-3x\right)\)
=\(2\left[x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3^{ }}{2}\right)^2-\left(\dfrac{3}{2}\right)^2\right]\)
\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\left(\dfrac{3}{2}\right)^2\right]\)
=\(2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\ge2\left(0-\dfrac{9}{4}\right)\ge0\)
Vậy GTNN của biểu thức là\(\dfrac{-9}{2}\) xẩy ra khi \(x=\dfrac{3}{2}\)
Nguồn: OLM
Bạn học tốt nhé!
2x.(x - 5) - x.(3 + 2x) = 26
=> (2x2 - 10x) - (3x + 2x2) = 26
=> 2x2 - 10x - 3x - 2x2 = 26
=> -13x = 26
=> x = 26 : (-13)
=> x = -2
2x.﴾x ‐ 5﴿ ‐ x.﴾3 + 2x﴿ = 26 => ﴾2x 2 ‐ 10x﴿ ‐ ﴾3x + 2x 2 ﴿ = 26 => 2x 2 ‐ 10x ‐ 3x ‐ 2x 2 = 26 => ‐13x = 26 => x = 26 : ﴾‐13﴿ => x = ‐2
a) [x(x+1].[(x-1)(x+2)]=24
(x2+x)(x2+x+2)=24
Dat x2+x=a , ta dc: a(a+2)=24
=> a2+2a-24=0
=> (a-4)(a+6)=0
=> a=4 hoac a=-6
Thay vao roi tu tim x nha
b)
\(A=x^2-6x+15\)
\(A=x^2-2\cdot x\cdot3+3^2+6\)( biến đổi về dạng HĐT )
\(A=\left(x-3\right)^2+6\)
vì ( x - 3 )2 luôn >= 0 với mọi x
\(\Rightarrow A\ge6\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin = 6 <=> x = 3
\(B=2x^2-10x+8\)
\(B=2\left(x^2-5x+4\right)\)
\(B=2\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{9}{4}\right)\)
\(B=2\left[\left(x-\frac{5}{2}\right)^2-\frac{9}{4}\right]\)
\(B=2\left(x-\frac{5}{2}\right)^2-\frac{9}{2}\)
Vì 2( x - 5/2 )2 luôn >= 0 với mọi x
\(\Rightarrow B\ge\frac{-9}{2}\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy Bmin = -9/2 <=> x = 5/2
\(\frac{x^3-x^2-x-2}{x^5-3x^4+4x^3-5x^2+3x-2}\)
\(=\frac{x^3-2x^2+x^2-2x+x-2}{x^5-2x^4-x^4+2x^3+2x^3-4x^2-x^2+2x+x-2}\)
\(=\frac{\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)}{\left(x^5-2x^4\right)-\left(x^4-2x^3\right)+\left(2x^3-4x^2\right)-\left(x^2-2x\right)+\left(x-2\right)}\)
\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)}{x^4\left(x-2\right)-x^3\left(x-2\right)+2x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-2\right)\left(x^4-x^3+2x^2-x+1\right)}=\frac{x^2+x+1}{x^4-x^3+2x^2-x+1}\)
x3 - 2x2 + 6x = 12
x3 - 2x2 + 6x - 12 = 0
x2(x - 2) + 6(x - 2)=0
(x - 2)(x2 + 6) = 0
\(\Leftrightarrow \begin{bmatrix} x - 2 = 0 & & \\ x^{2} + 6 = 0& & \end{bmatrix}\) bỏ dấu ngoặc bên phải nha pn
\(\Leftrightarrow \begin{bmatrix} x = 2 & & \\ x^{2} = - 6 & & \end{bmatrix}\) không tìm được giá trị của x (pn ghi cái này kế pn chỗ x2 = - 6 nhé
Vậy x = 2
\(x^3-2x^2+6x=12\)
\(\Rightarrow\) \(x^3-2x^2+6x-12=0\)
\(\Rightarrow x^2\left(x-2\right)+6\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)
Vậy $x=2$