Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thì ĐKXĐ là phải lấy tất cả các biểu thức trong căn phải không âm
Bạn nhớ rằng $\sqrt{a}$ xác định khi mà $a\geq 0$, hay $a$ không âm.
Cho $a=x-1$ thì để $\sqrt{x-1}$ xác định thì $x-1\geq 0$
$\Leftrightarrow x\geq 1$
Phân tích rõ một chút nhé :
- Căn bậc 2 của số x (bắt buộc là số x phải >=0 ) là \(\sqrt{x},-\sqrt{x}\)
Thì căn bậc 2 số học của x là \(\sqrt{x}\)(do\(\sqrt{x}\ge0\))
- Đối với trường hợp căn bậc 2 số học của x2 thì là |x|
Ý bạn là sao nhỉ?
Theo mình hiểu thì bạn muốn biến 72 thành căn đúng không? Vậy thì bạn chỉ cần biểu diễn $72=\sqrt{72^2}=\sqrt{5184}$ thôi.
Cách hỏi của bạn thực sự hơi khó hiểu. Mình chỉ trả lời theo cách hiểu của mình về câu hỏi của bạn thôi nhé.
- Thứ nhất, không cần phải tìm điều kiện của số trong giá trị tuyệt đối. Thông thường khi đến đoạn $\sqrt{a^2}=|a|$ thì đề bài đã có sẵn điều kiện $a\geq 0$ hoặc $a< 0$ để bạn tiếp tục thực hiện đến đoạn phá trị tuyệt đối. Ví dụ, cho $a< 0$ thì $\sqrt{a^2}=|a|=-a$
- Thứ hai, trong trường hợp $\sqrt{5a}.\sqrt{45a}-3a$, điều kiện để biểu thức này có nghĩa là $5a\geq 0$ và $45a\geq 0$, hay $a\geq 0$.
Khi đó, để phá căn và xuất hiện trị tuyệt đối, bạn thực hiện $\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\sqrt{(15a)^2}-3a=|15a|-3a=15a-3a=12a$
\(\sqrt{f\left(x\right)}=\sqrt{g\left(x\right)}\left(ĐK:\left[{}\begin{matrix}f\left(x\right)\ge0\\g\left(x\right)\ge0\end{matrix}\right.\right)\\ \Leftrightarrow f\left(x\right)=g\left(x\right)\)
Trong ví dụ \(\sqrt{16x}=\sqrt{81}\), trước khi bình phương 2 vế để phá dấu căn thì bạn cần ghi điều kiện \(16x\ge0\Leftrightarrow x\ge0\) nhé.
Bạn chỉ cần phân tích nó ra thành thừa số nguyên tố là xong
Nếu em thay $x=9,10,...$ không ra kết quả thì có nghĩa bài toán không có nghiệm $x=9,10,...$ thôi.
Em xét 3 TH:
$x\geq 7$
$3\leq x< 7$
$x< 3$
Để phá trị tuyệt đối
Còn không có chuyện phải thay $x\leq 7$
Khi thay số âm vào mũ chẵn (2;4;6...) thì luôn luôn phải đóng mở ngoặc, nếu ko sẽ dẫn tới kết quả sai ngay lập tức:
Ví dụ: \(x^2-1\) với \(x=-2\)
Nếu đóng mở ngoặc: \(\left(-2\right)^2-1=3\) (đúng)
Không đóng mở ngoặc: \(-2^2-1=-5\) (sai)
Trong trường hợp mũ lẻ (mũ 1; 3; 5...) có thể không cần ngoặc nếu thấy đủ tự tin về khả năng toán của bản thân.
Đề ví dụTimf x không âm biết căn (x-1)=...... Đề bải x không âm thì chỉ cần x>=0 thôi chứ ạ. Chỉ rõ chio mình hiểu nhá
Vì khi lấy ĐKXĐ thì lấy cả biểu thức trong căn mới đúng