Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu bài là như này đúng không hả bạn
\(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)\)\(=\frac{3}{4}\)
Ta có :\(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)\)\(=\frac{3}{4}\)
\(\frac{2}{3}:\left(x-1\right)\)\(=\frac{1}{4}\)
\(\left(x-1\right)\)\(=\frac{8}{3}\)
\(x=\frac{11}{3}\)
Hình như bạn nhập sai đề bài rùi , thôi mik sửa theo cách mik thử
Nếu \(\left(\frac{1}{2}\right)^{2x}+1=\frac{1}{8}\)
Ta có: \(\left(\frac{1}{2}\right)^{2x}=-\frac{7}{8}\)
mà \(\left(\frac{1}{2}\right)^{2x}\ge0\forall x;-\frac{7}{8}< 0\)
\(\Rightarrow2x\in\varnothing\Rightarrow x\in\varnothing\)
Ta có :
5x + 1 - ( 5x - x2 )
= 5x + 1 - 5x + x2
= x2 + 1
vì x2 \(\ge\)0 nên x2 + 1 > 0
Vậy đa thức trên không có nghiệm
bạn hãy đến Bắc hoặc Nam cực cắm 1 cây cờ xuống đó và chạy quanh cây cờ đó 1 vòng là xong!!
Bài 6:
a) Xét ΔBAC vuông tại A và ΔBAD vuông tại A có
BA chung
AC=AD(gt)
Do đó: ΔBAC=ΔBAD(hai cạnh góc vuông)
Suy ra: \(\widehat{CBA}=\widehat{DBA}\)(hai góc tương ứng)
hay BA là tia phân giác của \(\widehat{DBC}\)
a) Xét △AMB và △AMC có:
AB = AC ( gt)
AM chung
BM = MC (gt)
\(\Rightarrow\) △AMB = △AMC (c.c.c)
b) Ta có : △AMB = △AMC
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) ( 2 góc tương ứng)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{BAC}\) (ĐPCM)
c) Ta có: \(\widehat{BMA}+\widehat{CMA}=180^o\) ( kề bù)
Mà \(\widehat{BMA}=\widehat{CMA}\) (△AMB = △AMC)
\(\Rightarrow\widehat{BMA}=\widehat{CMA}=\frac{180^o}{2}=90^o\)
\(\Rightarrow\) AM ⊥ BC (ĐPCM)
d) Gọi tia đối của tia AC là tia Ax.
Vì At là tia phân giác \(\widehat{xAB}\)
\(\Rightarrow\widehat{xAt}=\widehat{tAB}\)
Vì △ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Ta có :\(\widehat{xAB}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{xAt}+\widehat{tAB}=\widehat{ABC}+\widehat{ABC}\)
\(\Rightarrow2\widehat{tAB}=2\widehat{ABC}\)
\(\Rightarrow\widehat{tAB}=\widehat{ABC}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)At // BC (ĐPCM)
Tam giác ABC vuông tại A
=>AB=AC ( 2 cạnh góc vuông của tam giác vuông cân)
BC là cạnh huyền
=> BC^2=AB^2+BC^2=2AB^2 (do AB=BC)
=2a^2
=> BC= \(\sqrt{2}a\)