Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao điểm của hai đường phân giác xuất phát từ đỉnh B và đỉnh C của tam giác ABC.
- Vì I nằm trên tia phân giác BE của góc B nên IL = IH (1) (theo định lí 1 về tính chất của tia phân giác).
- Tương tự, ta có IK = IH (2).
- Từ (1) và (2) suy ra IK = IL (= IH), hay I cách đều hai cạnh AB, AC của góc A. Do đó I nằm trên tia phân giác của góc A (theo định lí 2 về tính chất của tia phân giác), hay AI là đường phân giác xuất phát từ đỉnh A của tam giác ABC.
Tóm lại, ba đường phân giác của tam giác ABC cùng đi qua điểm I và điểm này cách đều ba cạnh của tam giác, nghĩa là : IH = IK = IL.
Xét hai tam giác \(\Delta OAD;\Delta OCB\)có OA = OC,OB = OD \((gt)\)và góc xOy chung,suy ra \(\Delta OAD=\Delta OCB(c.g.c)\)=> AD = BC
a) ta có O là trung điểm của AC \(\Rightarrow OC=OA\)
O là trung điểm của BD\(\Rightarrow OB=OD\)
Xét \(\Delta AODvà\Delta COBcó\)
\(OD=OB\) (chứng minh trên )
\(\widehat{AOD}=\widehat{COB}\) (2 góc đối đỉnh)
\(OA=OC\) (chứng minh trên)
\(\Rightarrow\Delta AOD=\Delta COB\left(c-g-c\right)\)
vậy \(\Delta AOD=\Delta COB\)
b) ta có \(\Delta AOD=\Delta COB\) (chứng minh câu a)
\(\Rightarrow\widehat{ADO}=\widehat{CBO}\) hay \(\widehat{ADB}=\widehat{CBD}\) mà 2 góc lày là 2 góc so le trong
\(\Rightarrow AD//BC\)
vậy \(AD//BC\)
c) ta có \(\Delta AOD=\Delta COB\) (chứng minh câu a)
\(\Rightarrow AD=BC\)
mà \(AE=DE\) (vì E là trung điểm của AD )
\(BF=CF\)(vì F là trung điểm của AD )
\(\Rightarrow AE=DE=BF=CF\)
Xét \(\Delta AOEvà\Delta COFcó\)
\(EA=CF\) (chứng minh trên)
\(\widehat{OAE}=\widehat{OCF}\) (vì \(\Delta AOD=\Delta COB\))
\(OA=OC\) (chứng minh câu a)
\(\Rightarrow\Delta AOE=\Delta COF\left(c-g-c\right)\)
\(\Rightarrow OF=OE\)
\(\Rightarrow\) E là trung điểm của EF
vậy E là trung điểm của EF
\(\Delta AOD=\Delta COB\)\(\Delta AOD=\Delta COB\)
Tam giác ABC cân tại A=>AM là đường trung tuyến đồng thời là đường phân giác.
=>Góc A1=góc A2.
Xét tam giác vuông AHM và tam giác vuông AKM có:
AM chung.
Góc A1=góc A2.
=>Tam giác AHM=tam giác AKM(cạnh huyền-góc nhọn).
=>AH=AK(2 cạnh tương ứng).
# Aeri #
góc B= góc C => tam giác ABC cân tại A.
M trung điểm BC => AM trung tuyến đồng thời là pg => góc HAM = góc KAM
xét tam giác HAM= tam giác KAM ( cạnh huyền= góc nhọn )
suy ra AH= AK ( dpcm)
Khi 3 điểm nào đó nằm trên cùng 1 đường thảng ta nói chúng thảng hàng .
CÁCH 1 : DỰA VÀO TIÊN ĐỀ Ơ- CLÍT