Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7)\(\frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1\)(-1<x<1)
Đặt a=1-x2 ta được: (ĐK a>0)
\(\frac{1}{a}>\frac{3x}{\sqrt{a}}-1\)
\(\Leftrightarrow\frac{1}{a}-\frac{3\sqrt{a}x}{a}+\frac{a}{a}>0\)
\(\Leftrightarrow\frac{1-3\sqrt{a}x+a}{a}>0\)
\(\Leftrightarrow1-3\sqrt{a}x+a>0\left(a>0\right)\)
\(\Leftrightarrow1-3\sqrt{x^2-1}.x+x^2-1>0\)
\(\Leftrightarrow x^2>3\sqrt{x^2-1}x\)
<=>x4 > 9.(x2-1).x2
<=>x4>9x4-9x2
<=>8x4-9x2<0
<=>x2.(8x2-9)<0
<=>8x2-9<0
<=>x2<9/8
=>\(-\frac{3\sqrt{2}}{4}\)<x<\(\frac{3\sqrt{2}}{4}\)
2, a,
\(f\left(-2\right)=5-2\times\left(-2\right)=9\)
\(f\left(-1\right)=5-2\times\left(-1\right)=7\)
\(f\left(0\right)=5-2\times0=5\)
\(f\left(3\right)=5-2\times3=-1\)
b, \(y=5\Leftrightarrow5-2x=5\Leftrightarrow x=0\)
\(y=3\Leftrightarrow5-2x=3\Leftrightarrow x=1\)
\(y=-1\Leftrightarrow5-2x=-1\Leftrightarrow x=3\)
14:
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(4+9-BC^2=2\cdot2\cdot3\cdot\dfrac{-1}{2}=-6\)
=>BC^2=13+6=19
=>BC=căn 19(cm)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot2\cdot3\cdot\dfrac{1}{2}=\dfrac{3}{2}\)
Xét ΔABC có \(\dfrac{BC}{sinA}=2R\)
=>2R=căn 19:1/2=2*căn 19
=>R=căn 19
Xét ΔABC có AD là phân giác của góc BAC
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot2\cdot3}{2+3}\cdot\dfrac{1}{2}=\dfrac{6}{5}\)
\(tan\dfrac{\pi}{6}+tan\dfrac{2\pi}{9}+tan\dfrac{5\pi}{18}+tan\dfrac{\pi}{3}\)\(=\left(tan\dfrac{\pi}{6}+tan\dfrac{\pi}{3}\right)+\left(tan\dfrac{2\pi}{9}+tan\dfrac{5\pi}{18}\right)\) (1)
Áp dụng công thức: \(tanx+tan\left(90^o-x\right)=tanx+cotx=\dfrac{1}{sinx.cosx}\)
Ta được:(1) = \(\dfrac{1}{sin\dfrac{\pi}{6}cos\dfrac{\pi}{6}}+\dfrac{1}{sin\dfrac{2\pi}{9}.cos\dfrac{2\pi}{9}}\)
\(=\dfrac{2}{sin\dfrac{\pi}{3}}+\dfrac{3}{sin\dfrac{4\pi}{9}}\)
Em làm tiếp nhé.
Ta có: \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(9^{75}>8^{75}\Rightarrow3^{150}>2^{225}\)
Vậy...
\(b,\) \(\sqrt{x^2-x-2}\) \(< x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x-2\ge0\\x-1>0\\x^2-x-2< x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)\ge0\\x>1\\x< 3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le-1\\x>1\\x< 3\end{matrix}\right.\) \(\Rightarrow2\le x>3\)
Ta có: \(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left|y-3\right|\ge0\end{matrix}\right.\Rightarrow\left(x+2\right)^2+\left|y-3\right|\ge0\)
Mà \(\left(x+2\right)^2+\left|y-2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=0\\\left|y-3\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+2=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
Vậy x = -2
13:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot5\cdot8\cdot\dfrac{\sqrt{3}}{2}=\dfrac{4\sqrt{3}}{2}\cdot5=10\sqrt{3}\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(5^2+8^2-BC^2=2\cdot5\cdot8\cdot cos60=40\)
=>BC^2=49
=>BC=7
S=pr
=>r*(5+8+7)/2=10căn 3
=>r=10căn 3/10=căn 3
Xét ΔABC có
BC/sinA=2R
=>2R=7:sin60=7*2/căn 3
=>R=7/căn 3