Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\begin{array}{l}{u_1} + {u_2} + {u_3} = - 1 \Leftrightarrow {u_1} + {u_1} + d + {u_1} + 2d = - 1\\ \Leftrightarrow 3{u_1} + 3d = - 1\\ \Leftrightarrow 3.\left( {\frac{1}{3}} \right) + 3d = - 1\\ \Leftrightarrow 3d = - 2\\ \Leftrightarrow d = - \frac{2}{3}\end{array}\)
Công thức tổng quát của số hạng \({u_n}\): \({u_n} = \frac{1}{3} + \left( {n - 1} \right)\left( { - \frac{2}{3}} \right)\)
b) Ta có:
\(\begin{array}{l} - 67 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = 101\\ \Leftrightarrow n = 102\end{array}\)
- 67 là số hạng thứ 102 của cấp số cộng
c) Ta có:
\(\begin{array}{l}7 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = - 10\\ \Leftrightarrow n = - 9\end{array}\)
7 không là số hạng của cấp số cộng
u 1 = − 5 d = 3 → n ↔ u n = 100 100 = u n = u 1 + n − 1 d = − 5 + ( n − 1 ) .3 ⇔ 100 = 3 n − 8 ⇔ 3 n = 108 ⇔ n = 36
Chọn đáp án D
Số hạng tổng quát của cấp số cộng: \({u_n} = \left( {n - 1} \right)d\)
Ta có:
\[\left\{ \begin{array}{l}{u_5} = {u_1} + 4d = 18\\{u_{12}} = {u_1} + 11d = 32\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 10\\d = 2\end{array} \right.\]
\( \Rightarrow {u_n} = 10 + 2\left( {n - 1} \right) = 2n + 8\).
Số hạng thứ 50: \({u_{50}} = 2.50 + 8 = 108\)
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Gọi 3 số hạng của cấp số cộng là: \(5;5+d;5+2d\)
Gọi 3 số hạng của cấp số nhân là: \(5;5q;5q^2\).
Ta có hệ sau:\(\left\{{}\begin{matrix}5+2d=5q^2\\5+d=5q+10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5+2d=5q^2\\d=5q+5\end{matrix}\right.\)\(\Rightarrow5+2.\left(5q+5\right)=5q^2\)\(\Rightarrow\left\{{}\begin{matrix}q=-1\\q=3\end{matrix}\right.\).
Với \(q=-1\) thì \(d=5.q+5=5.\left(-1\right)+5=0\).
Với \(q=3\) thì \(d=5.q+5=5.3+5=20\).
Vậy
Với \(q=-1\):
3 số hạng của cấp số cộng là: 5; 5; 5.
3 số hạng của cấp số nhân là: 5; - 5; 5.
Với \(q=3\):
3 số hạng của cấp số cộng là: 5; 25; 45.
3 số hạng của cấp số nhân là: 5; 15; 45.
a: u4=u1+3d
=>u1=-5-3d=-5-3*3=-14
u15=u1+14d=-14+14*3=28
b: Đặt 145=u1+3(n-1)
=>3(n-1)-14=145
=>3(n-1)=159
=>n-1=53
=>n=54
a: u4=u1+3d
=>u1=u4-3d=-3-3*2=-9
u15=u1+14d=-9+14*2=28-9=19
b: \(u_n=u_1+\left(n-1\right)\cdot d=-9+\left(n-1\right)\cdot2=2n-2-9=2n-11\)
Đặt 2n-11=195
=>2n=206
=>n=103
=>195 là số hạng thứ 103 của dãy
Chọn đáp án D
Có u n = u 1 + ( n - 1 ) d = 8 - 5 n
⇔ n = 8