Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a)
Vì \(\left(x-2\right).\left(y+5\right)=7\Rightarrow\)x-2 và y+5 là các ước của 7
\(Ư\left(7\right)=\left\{1;7\right\}\)
Lập bảng giá trị:
x-2 | 1 | 7 |
y+5 | 7 | 1 |
x | 3 | 9 |
y | 2 | -4 |
Chọn/Loại | Chọn | Loại |
Vậy \(x=3;y=2\)
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy....
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=30.\left(1+5^2+...+5^6\right)⋮30\)
Bài 1 bạn kia giải rồi
2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> (6n+15)-(6n+14) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* nên d = 1
=> ƯCLN(2n+5;3n+7) = 1
Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
3. Nếu x+2y chia hết cho 5
=> 3.(x+2y) chia hết cho 5
=> 3x+6y chia hết cho 5
Mà 10y chia hết cho 5
=> (3x+6y)-10y chia hết cho 5
=> 3x - 4y chia hết cho 5
=> ĐPCM
Để tính tổng của dãy số A=5+5^2+5^3+…+5^100, chúng ta có thể sử dụng công thức tổng của cấp số nhân. Công thức này là: S = a * (r^n - 1) / (r - 1), trong đó S là tổng của cấp số nhân, a là số hạng đầu tiên, r là công bội và n là số lượng số hạng. Trong trường hợp này, a = 5, r = 5 và n = 100. Áp dụng công thức, ta có: S = 5 * (5^100 - 1) / (5 - 1) Bạn có thể tính giá trị của S bằng cách sử dụng máy tính hoặc công cụ tính toán trực tuyến.
Câu 1 : chia hết cho 6 thì nhóm 2 số thành 1 cặp
chia hết cho 51 thì nhóm 3 số thành 1 cặp
chia hết cho 156 thì nhóm 4 số thành 1 cặp
k mk nha
câu 1:
A = 5+52+...+52004
=(5+52)+...+(52003+52004)
=5(1+5)+...+52003(1+5)
=5.6+...+52003.6
=6(5+...+52003) chia hết cho 6
A=5+52+...+52004
=(5+52+53)+...+(52002+52003 + 52004)
=5(1+5+52)+...+52002(1+5+52)
=5.31+...+52002.31
=31(5+...+52002) chia hết cho 31
A=5+52+...+52004
=(5+52+53+54)+...+(52001+52002+52003+52004)
=5(1+5+52+53)+...+52001(1+5+52+53)
=5.156+...+52001.156
=156(5+...+52001) chia hết cho 156
Câu 2:
(x+3)(2y-5)=34
=> x+3 và 2y-5 thuộc Ư(34)={1;2;17;34}