K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

d) Để A>0 thì \(\sqrt{x}-2>0\)

hay x>4

24 tháng 11 2021

\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)

25 tháng 10 2023

a: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b: Khi \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\) thì

\(M=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-2}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)

\(=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\left(\sqrt{2}-1\right)^2=3-2\sqrt{2}\)

c: M>0

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\)

mà \(\sqrt{x}>0\)

nên \(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

=>\(\sqrt{x}< 1\)

=>\(0< =x< 1\)

c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:

\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)

\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}-1}{2}\)

5 tháng 5 2021

tìm cả đk giúp mik vs

NV
5 tháng 5 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)

6 tháng 11 2021

a, \(\Rightarrow M=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

 \(\Rightarrow M=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b, \(x=3+2\sqrt{2}\Rightarrow M=\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}.1+1}-2}{\sqrt{2+2\sqrt{2}.1+1}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2-2\sqrt{2}+1}{2-1}=3-2\sqrt{2}\)

c, \(M>0\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\Rightarrow x>4\)

21 tháng 12 2021

a: \(A=\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}-1}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(\sqrt{x}-2\right)^2}{3}\)

22 tháng 12 2021

Đề bạn gõ sai, mình có sửa lại r nha

\(a,A=\dfrac{1-\sqrt{x}+1}{\sqrt{x}-1}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3}\\ x=5\Leftrightarrow A=\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{3}=\dfrac{5-2\sqrt{5}}{3}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=-1\Leftrightarrow x-2\sqrt{x}+1=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)^2=0\Leftrightarrow x=1\left(ktm\right)\Leftrightarrow x\in\varnothing\)

a: Ta có: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right):\left(\dfrac{x-1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-2x^2+4x-2=0\)

\(\Leftrightarrow2x^2+4x-2=0\)

\(\Leftrightarrow x^2+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}-1\\x=\sqrt{2}-1\end{matrix}\right.\)

c: Ta có: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\)

Thay x=2 vào E, ta được:

\(E=\dfrac{4\cdot2^2}{1}=16\)