Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lâu rồi không giải bài lớp 6 có gì sai sót xin bỏ qua hé!
1. a, để a+b lớn nhất thì a, b phải lớn nhất
mà a,b là số nguyên có 4 chữ số nên a, b lớn nhất đều bằng 9999
suy ra a+b lớn nhất là 9999+9999=(tự tính)
b, tương tự trên nhưng a, b đều bằng -9999 (âm nha)
hai câu sau thì tự làm tìm giá trị a,b rồi cộng trừ theo đề.
2. số nguyên âm lớn nhất là -1
Mà x+2019 là số nguyên âm lớn nhất suy ra x+2019=-1
tiếp theo tự tính
3.hướng dẫn
b, \(\left|x-28\right|+7=15\)
\(\Rightarrow\left|x-28\right|=8\)
\(\Rightarrow\orbr{\begin{cases}x-28=8\\x-28=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=36\\x=30\end{cases}}\)
vậy.........................
4. hướng dẫn \(a.b=0\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
a.,,\(\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+7=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-7\end{cases}}\)
Vậy....
b, \(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x^2=9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
Vậy.....................
c,\(\left(x^2-7\right)\left(x^2-51\right)< 0\)
(đúng ra mk sẽ giải cách dễ hiểu hơn nhưng hơi rắc rối mà phần mềm này ko hiển thị hết được nên thôi nha)
Hướng dẫn: hai số nhân với nhau mà âm thì hai số đó trái dấu (tức là 1 âm 1 dương)
khi đó số lớn hơn sẽ dương mà số bé hơn sẽ âm
giải:
Ta có Vì \(\left(x^2-7\right)\left(x^2-51\right)< 0\) nên \(x^2-7\)và \(x^2-51\)trái dấu
Mà \(x^2-7\)\(>\)\(x^2-51\)nên \(\Rightarrow\hept{\begin{cases}x^2-7>0\\x^2-51< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2>7\\x^2< 51\end{cases}}\)\(\Rightarrow7< x^2< 51\)
Mà \(x\inℤ\)nên \(x^2\)là số chính phương \(\Rightarrow x^2\in\left\{9;16;25;36;49\right\}\)
\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)
Làm tắt tí hi vọng bạn hiểu!
\(\dfrac{2}{3}\) < \(\dfrac{x}{6}\) < 1
\(\dfrac{4}{6}\) < \(\dfrac{x}{6}\) < \(\dfrac{6}{6}\)
⇒ 4 < \(x\) < 6
Vì \(x\in\) Z nên \(x\) = 5
Chọn A.5
\(A=\frac{3n-4}{n+1}\)
\(\text{Để A }\frac{3n-4}{n+1}\text{ là số nguyên }\)
\(\Rightarrow3n-4⋮n+1\)
\(\Rightarrow3n+3-7⋮n+1\)
\(\Rightarrow3\left(n+1\right)-7⋮n+1\)
\(\text{Vì }3\left(n+1\right)⋮n+1\text{ nên }7⋮n+1\)
\(\Rightarrow n+1\inƯ\left(7\right)\)
\(\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{0;-2;6;-8\right\}\)
Câu 1:
a) Gọi biểu thức đó là A
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vài công thức ta có ;
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{19}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) Gọi biểu thức đó là S
\(S=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2016}{2017}\right)\)
\(S=-\left(\frac{1.2.3.4....2016}{2.3.4.5....2017}\right)=-\left(\frac{1}{2017}\right)=-\frac{1}{2017}\)
Rất tiếc nhưng phần c mink ko biết làm, để mink nghĩ đã
Câu 2 :
a) \(\frac{5}{n+1}\)
Để 5/n+1 là số nguyên thì n + 1 là ước nguyên của 5
n+1=1 => n = 0
n + 1 =5 => n = 4
n+1=-1 => n =-2
n+1 = -5 => n = -6
b) \(\frac{n-6}{n+1}=\frac{n+1-7}{n+1}=1-\frac{7}{n+1}\)
Để biểu thức là số nguyên thì n + 1 là ước của 7
n + 1 = 1 => n= 0
n+1=7=> n =6
n + 1 = -7 => n =-8
n+1=-1 => n= -2
c) \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+6}{n+1}=2+\frac{6}{n+1}\)
Để biểu thức là số nguyên thì n+1 là ước của 6
n+1 = | 1 | -1 | 6 | -6 |
n = | 0 | -2 | 5 | -7 |
Từ đó KL giá trị n
CÂU 3 :
b) \(A=\frac{x-1}{x+2}=\frac{x+2-3}{x+2}=1-\frac{2}{x+2}\)
x+2= | 1 | -1 | 2 | -2 |
x = | -1 | -3 | 0 | -4 |
Rồi bạn thử từng x khi nào thấy A = 2 thì chọn nha!!
Ai thấy đúng thì ủng hộ nha !!!
câu 1 :
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19+20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{19}+\frac{1}{19}\right)-\frac{1}{20}\)
\(=\frac{1}{2}+0+0+0+...+0-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2017}-1\right)\)
\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{2016}{2017}\right)\)
Vì phép nhân có thể rút gọn
Nên \(-1.\frac{-1}{2017}=\frac{1}{2017}\)
Câu 2 :
a) Ta có : \(\frac{5}{n+1}\)
Để \(\frac{5}{n+1}\in Z\Leftrightarrow5⋮n+1\Leftrightarrow n+1\inƯ_{\left(5\right)}=\){ -1; 1; -5; 5 }
Với n + 1 = -1 => n = -1 - 1 = - 2 ( TM )
Với n + 1 = 1 => n = 1 - 1 = 0 ( TM )
Với n + 1 = - 5 => n = - 5 - 1 = - 6 ( TM )
Với n + 1 = 5 => n = 5 - 1 = 4 ( TM )
Vậy Với n \(\in\){ - 2; 1; - 6; 4 } thì 5 \(⋮\)n + 1
Còn câu b nữa tương tự nha
" TM là thỏa mản "
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
TICK CHO MÌNH NHÉ
Giải:
Câu 1: d
Câu 2: a
1.C
2.