Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(A=-\left|x-7\right|+2\le2\\ A_{max}=2\Leftrightarrow x-7=0\Leftrightarrow x=7\\ B=-5-\left|2x+3\right|\le-5\\ A_{max}=-5\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)
a = |2x-1/3|-7/4
Do |2x-1/3| \(\ge\) 0
|2x-1/3|-7/4 \(\ge\) 7/4
Dấu = xảy ra <=> 2x-1/3=0. =>. x= 1/6
b 1/3|x-2|+2|3-1/2 y|+4
Do |x-2| \(\ge\) 0
|3-1/2y| \(\ge\) 0
=> 1/3|x-2|+2|3-1/2 y|+4 \(\ge\) 4
Dấu = xảy ra <=>\(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
a: Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)
b: Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(2\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+2\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|\cdot\dfrac{1}{3}+\left|3-\dfrac{1}{2}y\right|\cdot2+4\ge4\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=6
a) \(\left(x+1\right)\left(x^2+1\right)=0\)
Vì \(\left(x^2+1\right)>0\forall x\)
\(\Rightarrow x=-1\)
b) \(5y^2-20=0\)
\(y^2-4=0\)
\(\left(y-2\right)\left(y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
a, Ta có : \(\left(x+1\right)\left(x^2+1>0\right)=0\Leftrightarrow x=-1\)
b, \(5y^2=20\Leftrightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
c, \(\left|x-2\right|-1=0\Leftrightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
d, \(\left|y-2\right|+5=0\)( vô lí )
Vậy ko có gtr y để bth bằng 0
a)\(A=12-\left|x-3\right|-\left|y+7\right|\)
\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)
\(\Rightarrow A\le12-0-0=12\)
Vậy Max A = 12 <=> x = 3 ; y = -7
b)\(B=-\left(x-2018\right)^6-1\)
\(-\left(x-2018\right)^6\le0\)
\(B\le0-1=-1\)
Vậy Max B = -1 <=> x = 2018
a) \(A=12-\left|x-3\right|-\left|y+7\right|\)
Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)
suy ra: \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)
Vậy MIN A = 12
Dấu "=" xảy ra <=> \(x=3;y=-7\)
b) \(B=-\left(x-2018\right)^6-1\)
Nhận thấy: \(\left(x-2018\right)^6\ge0\)
suy ra: \(B=-\left(x-2018\right)^2-1\le-1\)
Vậy MIN B = -1
Dấu "=" xảy ra <=> \(x=2018\)
c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)
Nhận thấy: \(\left|x+8\right|\ge0\) \(\left(3y+7\right)^{2016}\ge0\)
suy ra: \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)
Vậy MIN C = 20/7
Dấu "=" xảy ra <=> \(x=-8;y=-\frac{7}{3}\)
Bài 2
Ta có :
\(3y^2-12=0\)
\(3y^2=0+12\)
\(3y^2=12\)
\(y^2=12:3\)
\(y^2=4\)
\(\Rightarrow y=\pm2\)
b) \(\left|x+1\right|+2=0\)
\(\left|x+1\right|=0+2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
\(N=\frac{3}{2x^2+6}\)
Ta có: \(x^2\ge0\Rightarrow2x^2+6\ge6\)
\(\Rightarrow N_{Max}=\frac{3}{2x^2+6}=\frac{3}{6}=1,5\)
\(\Leftrightarrow2x^2+6=6\Leftrightarrow x=0\)