Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{A}\ge0\) ; \(\forall A\) nên GTNN của \(\sqrt{A}\) là \(0\)
Dấu "=" xảy ra khi \(x=0\)
Câu 2:
\(C=-x+\sqrt{x}\)
\(=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
\(A\le\sqrt{\left(3^2+4^2\right)\left(x-1\right)\left(5-x\right)}=10\)
\(A_{max}=10\) khi \(\dfrac{\sqrt{x-1}}{3}=\dfrac{\sqrt{5-x}}{4}\Rightarrow x=\dfrac{61}{25}\)
\(A=3\left(\sqrt{x-1}+\sqrt{5-x}\right)+\sqrt{5-x}\ge3\left(\sqrt{x-1}+\sqrt{5-x}\right)\ge3\sqrt{x-1+5-x}=6\)
\(A_{min}=6\) khi \(x=5\)
Lời giải:
\(P=\frac{2(\sqrt{x}+1)-3}{\sqrt{x}+1}=2-\frac{3}{\sqrt{x}+1}\)
Vì $\sqrt{x}\geq 0$ với mọi $x\neq 1; x\geq 0$
$\Rightarrow \sqrt{x}+1\geq 1\Rightarrow \frac{3}{\sqrt{x}+1}\leq 3$
$\Rightarrow P\geq 2-3=-1$
Vậy $P_{\min}=-1$. Giá trị này đạt tại $x=0$
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Câu 1:
\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)
\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)
Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm
\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)
Câu 2:
\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)
Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định
\(\Rightarrow 2-(a-1)^2\leq 2\)
\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)
Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)