Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
a. Phương trình đường tròn : (x – 3)2 + (y + 2)2 = 9.
b. (I1; R1) là ảnh của (I; 3) qua phép tịnh tiến theo vec tơ v.
⇒ Phương trình đường tròn cần tìm: (x – 1)2 + ( y + 1)2 = 9.
c. (I2; R2) là ảnh của (I; 3) qua phép đối xứng trục Ox
⇒ R2 = 3 và I2 = ĐOx(I)
Tìm I2: I2 = ĐOx(I) ⇒ ⇒ I2(3; 2)
⇒ Phương trình đường tròn cần tìm: (x – 3)2 + (y – 2)2 = 9.
d. (I3; R3) là ảnh của (I; 3) qua phép đối xứng qua gốc O.
⇒ R3 = 3 và I3 = ĐO(I)
Tìm I3: I3 = ĐO(I) ⇒
⇒ Phương trình đường tròn cần tìm: (x + 3)2 +(y – 2)2 = 9.
câu 1 : bài này có thể giải với nhiều loại cách khác nhau ; giờ mk sẽ giải cho bn bài này với 2 cách .
\(cách_1:\) vì đường tròn \(\left(x-2\right)^2+\left(y-1\right)^2=16\) là ảnh của đường tròn cần tìm được tịnh tiến theo \(\overrightarrow{v}\left(1;3\right)\)
nên ta lấy ảnh của đường tròn này tịnh tiến với véc tơ đối của \(\overrightarrow{v}\) là xong
ta có : \(\overrightarrow{n}\left(-1;-3\right)=-\overrightarrow{v}\left(1;3\right)\)
theo công thức ta có \(\left\{{}\begin{matrix}x'=x-1\\y'=y-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=y'+1\\x=x'+3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2=16\)
\(\Leftrightarrow\left(x'+1-2\right)^2+\left(y'+3-1\right)^2=16\)
\(\Leftrightarrow\left(x'-1\right)^2+\left(y'+2\right)^2=16\)
vậy đường tròn lúc đầu có phương trình \(\left(x-1\right)^2+\left(y+2\right)^2=16\)
\(cách_2:\)vì là ảnh nên \(x;y\) trong \(\left(x-2\right)^2+\left(y-1\right)^2=16\) là \(x';y'\) trong công thức .
theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+1\\y'=y+3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2=16\)
\(\Leftrightarrow\left(x+1-2\right)^2+\left(y+3-1\right)^2=16\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=16\)
vậy đường tròn lúc đầu có phương trình \(\left(x-1\right)^2+\left(y+2\right)^2=16\)
(bn chú ý \(x;y\) và \(x';y'\) trong 2 cách làm là khác nhau nha ; mk có giải thích ở trên) .
câu 2 : với \(T_{\overrightarrow{v}}\left(A\right)\)
theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x'=1+1=2\\y'=6+5=11\end{matrix}\right.\)
\(\Rightarrow C\left(2;11\right)\)
với \(T_{\overrightarrow{v}}\left(B\right)\)
theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x'=-1+1=0\\y'=-4+5=1\end{matrix}\right.\)
\(\Rightarrow D\left(0;1\right)\)
vậy điểm \(C\left(2;11\right);D\left(0;1\right)\)
câu 1 sai cả hai cách rồi bạn êy