K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2023

Làm xong nhớ tick cho mình đấy nhé !

a) Xét ∆ABM và ∆ACM, ta có :

AB = AC (vì ∆ABC cân tại A)

AM là cạnh chung

MB = MC (vì M là trung điểm của BC)

ð ∆ABM = ∆ACM (c.c.c)

b) Xét ∆AMH và ∆AMK, ta có :

Góc HAM = góc KAM

AM là cạnh chung

Góc AHM = góc AKM

ð ∆AMH = ∆AMK

ð MH = MK (g.c.g)

c)  Trong ∆AJI, ta có :

Góc AJI = (180° - góc A) : 2       (1)

 Trong ∆ABC, ta có :

Góc abc = (180° - góc A) : 2      (2)

Từ (1) và (2) => góc AJI = góc ABC

Mà 2 góc này ở vị trí đồng vị

ð IJ // BC

9 tháng 3 2022

giúp với :vvvv

9 tháng 3 2022

a) Xét \(\Delta MBH\) vuông tại H và \(\Delta MCK\) vuông tại K:

BM = CM (M là trung điểm BC).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta MBH=\Delta MCK\) (cạnh huyền - góc nhọn).

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

=>ΔAHM=ΔAKM

=>AH=AK

Xét ΔACB co AH/AB=AK/AC
nên HK//BC

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM vừa là đường cao vừa là đường phân giác

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Ta có: ΔAHK cân tại A

mà AM là đường phân giác

nên AM là đường trung trực của HK

Sửa đề: M là trung điểm của BC

a) Sửa đề: ΔHBM=ΔKCM

Xét ΔHBM vuông tại H và ΔKCM vuông tại K có 

MB=MC(M là trung điểm của BC)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔHBM=ΔKCM(cạnh huyền-góc nhọn)

a: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

\(\widehat{MBH}=\widehat{MCK}\)

Do đó: ΔBHM=ΔCKM

Suy ra: MH=MK

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

MH=MK

Do đó:ΔAHM=ΔAKM

Suy ra: AH=AK

hay A nằm trên đừog trung trực của HK(1)

ta có: MH=MK

nên M nằm trên đường trug trực của HK(2)

Từ (1)và (2) suy ra AM là đường trung trực của HK

d: Ta có: \(\widehat{DBC}+\widehat{ABC}=90^0\)

\(\widehat{DCB}+\widehat{ACB}=90^0\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{DBC}=\widehat{DCB}\)

=>ΔDBC cân tại D

=>DB=DC

hay D nằm trên đường trung trực của BC(3)

Ta có: AB=AC
nên A nằm trên đường trung trực của BC(4)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(5)

Từ (3), (4) và (5) suy ra A,M,D thẳng hàng