Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
c: ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của EF
hay AM⊥FE
Ta có:
∠A₁ + ∠A₂ = 180⁰ (kề bù)
⇒ ∠A₂ = 180⁰ - ∠A₁ (1)
Lại có:
∠A₁ + ∠B₁ = 180⁰
⇒ ∠B₁ = 180⁰ - ∠A₁ (2)
Từ (1) và (2) ⇒ ∠A₂ = ∠B₁
Mà ∠A₂ và ∠B₁ là hai góc so le trong
⇒ a // b
4:
\(\widehat{A_1}=\widehat{A_3}\)(đối đỉnh)
\(\widehat{A_1}+\widehat{B_1}=180^0\)
=>\(\widehat{A_3}+\widehat{B_1}=180^0\)
mà hai góc này ở vị trí trong cùng phía
nên a//b
1: A=-1/2*xy^3*4x^2y^2=-2x^3y^5
Bậc là 8
Phần biến là x^3;y^5
Hệ số là -2
2:
a: P(x)=3x+4x^4-2x^3+4x^2-x^4-6
=3x^4-2x^3+4x^2+3x-6
Q(x)=2x^4+4x^2-2x^3+x^4+3
=3x^4-2x^3+4x^2+3
b: A(x)=P(x)-Q(x)
=3x^4-2x^3+4x^2+3x-6-3x^4+2x^3-4x^2-3
=3x-9
A(x)=0
=>3x-9=0
=>x=3
4) Ta có: ADB = BDC
Mà 2 góc này ở vị trí so le trong
=> AB//CD
Đúng thì like giúp mik nhé. Thx bạn
3) Dy//Ct vì \(\widehat{tCd}+\widehat{yDC}=180^0\) và \(\widehat{tCd}\); \(\widehat{yDC}\) là hai góc trong cùng phía
1, a và b có song song vì \(\)có 2 góc =70 độ ở vị trí so le trong
2.Mx và Ny có song song do góc M =góc N và 2 góc ở vị trí đônhg vị
3.Ct và Dy có song song vì góc C+ góc D=180 độ và 2 góc này ở vị trí trong cùng phía
4. có AD song song BC vì góc ADB=góc DBC
và 2 góc ở vị trí so le trong
4:
Có: Góc ADB = Góc DBC (GT)
Mà 2 góc này là 2 góc so le trong
=> AD // BC
a) Ta có: \(\widehat{BAC}+\widehat{xAC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{xAC}=100^0\)
\(\Leftrightarrow\widehat{xAt}=\widehat{CAt}=\dfrac{\widehat{xAC}}{2}=\dfrac{100^0}{2}=50^0\)
b) Ta có: \(\widehat{CAt}=\widehat{BCA}\left(=50^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên At//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Câu 11:
a: Xét ΔOAK vuông tại A và ΔOBK vuông tại B có
OK chung
\(\widehat{AOK}=\widehat{BOK}\)
Do đó: ΔOAK=ΔOBK
Suy ra: KA=KB
b: Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
c: Xét ΔKAD vuông tại A và ΔKBE vuông tại B có
KA=KB
\(\widehat{AKD}=\widehat{BKE}\)
Do đó: ΔKAD=ΔKBE
Suy ra: KD=KE
c: Ta có: ΔKAD=ΔKBE
nên AD=BE
=>OD=OE
=>ΔODE cân tại O
mà OK là đường phân giác
nên OK là đường cao