Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : b : c = 3 : 4 : 5
=> \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
mà \(\frac{b}{4}=\frac{2b}{8}\)
\(\frac{c}{5}=\frac{3c}{15}\)
=> \(\frac{a}{3}=\frac{2b}{8}=\frac{3c}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{2b}{8}=\frac{3c}{15}=\frac{a+2b+3c}{3+8+15}=\frac{44,2}{26}=1,7\)
\(\left[\begin{array}{nghiempt}\frac{a}{3}=1,7\\\frac{b}{4}=1,7\\\frac{c}{5}=1,7\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=3\times1,7\\b=4\times1,7\\c=5\times1,7\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=5,1\\b=6,8\\c=8,5\end{array}\right.\)
=> a + b - c = 5,1 + 6,8 - 8,5 = 3,4
Câu 10: Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
D = |2x + 2,5| + |2x - 3|
D = \(\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|\)
\(D\ge\left|5,5\right|=5,5\)
Dấu ''='' xảy ra khi \(\begin{cases}2x+2,5\ge0\\2x-3\le0\end{cases}\)\(\Rightarrow\begin{cases}2x\ge-2,5\\2x\le3\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1,25\\x\le1,5\end{cases}\)
\(\Rightarrow-1,25\le x\le1,5\)
Mà x nguyên \(\Rightarrow x\in\left\{-1;0;1\right\}\)
\(A=2^0+2^1+2^2+...+2^{21}\)
\(2A=2^1+2^2+2^3+...+2^{22}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(A=2^{22}-1\)
\(2^{22}-1=2^{2n}-1\)
\(2^{2\times11}-1=2^{2n}-1\)
n = 11
cho mình xin lỗi là 2^(2n-1)