K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2022

Xét ∆ABC và ∆DBC có: 

AB = BD 

Góc ABC = góc CBD 

Góc BAC = góc BDC 

=> ∆ABC = ∆DBC

22 tháng 12 2022

xét ΔABC và ΔDBC, ta có :

góc A = góc D (gt)

BC là cạnh chung

góc ABC = góc DBC

=> ΔABC = ΔDBC, (g.c.g)

28 tháng 10 2019

A B C M N D

a, xét tam giác ABN và tam giác ACM có : 

góc A chung

AB = AC (gt)

AN = AM (gt)

=> tam giác ABN = tam giacd ACM (c-g-c)

=> BN = CM (đn)

b, có AB = AC (gt)  

AB = BM + MA 

AC = CN + NA 

AM = AN (gt)

=> BM = CN 

AB = AC (gt) => tam giác ABC cân tại A (đn) => góc ABC = góc ACB (tc)

xét tam giác BCM và tam giác CBN có : BC chung

=> tam giác BCM = tam giác CBN (c-g-c)

c, tam giác BCM = tam giác CBN (Câu b)

=> góc DBC = góc DCB (đn) mà góc DBC = 30

xét tam giác DBC có : góc DBC + góc DCB + góc BDC = 180 (đl) 

góc BDC = 180 - 30.2 = 120 

mà góc BDC = góc MDN (đối đỉnh)

=> góc MDN = 120 

28 tháng 10 2019

a) Xét ΔABN và ΔACM có:

AB=AC

^BAC: góc chung

AM=AN

=>ΔABN=Δacm(c.g.c) 

=>BN=CM(hai cạnh tương ứng )

b) Ta có:

AB=AC

AM=AN

=>MB=NC

Xét ΔBCM và ΔCBN có:

MB=NC

BC:cạnh chung 

BN=CM

=>ΔBCM=ΔCBN(c.c.c) 

c) Vì ^BDC và ^MDN là hai góc đối đỉnh 

=>^BDC=^MDN

=>^MDN=30°

2 tháng 11 2019

a) Ta có \(\Delta ABC\) vuông tại \(A\left(gt\right).\)

=> \(\widehat{ABC}+\widehat{ACB}=90^0\) (tính chất tam giác vuông)

\(\widehat{ABC}=60^0\left(gt\right)\)

=> \(60^0+\widehat{ACB}=90^0\)

=> \(\widehat{ACB}=90^0-60^0\)

=> \(\widehat{ACB}=30^0.\)

b) Xét 2 \(\Delta\) vuông \(ABD\)\(ABC\) có:

\(\widehat{BAD}=\widehat{BAC}=90^0\)

\(AD=AC\left(gt\right)\)

Cạnh AB chung

=> \(\Delta ABD=\Delta ABC\) (cạnh huyền - cạnh góc vuông).

c) Gọi \(Bx\) là tia phân giác của \(\widehat{ABC}.\)

=> \(\widehat{ABx}=\widehat{xBC}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0.\)

\(AC\perp EC\left(gt\right)\)

=> \(\widehat{ACE}=90^0\)

Hay \(\widehat{xCE}=90^0.\)

=> \(30^0+90^0=\widehat{BCE}\)

=> \(\widehat{BCE}=120^0.\)

\(\Delta ABD=\Delta ABC\left(cmt\right)\)

=> \(\widehat{ABD}=\widehat{ABC}=60^0\) (2 góc tương ứng)

Ta có: \(\widehat{ABD}+\widehat{ABC}=\widehat{DBC}\)

=> \(60^0+60^0=\widehat{DBC}\)

=> \(\widehat{DBC}=120^0.\)

d) Theo câu c) ta có \(\left\{{}\begin{matrix}\widehat{ECB}=120^0\\\widehat{DBC}=120^0\end{matrix}\right.\)

=> \(\widehat{DBC}=\widehat{ECB}=120^0.\)

Xét 2 \(\Delta\) \(DBC\)\(ECB\) có:

\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)

\(\widehat{xBC}=\widehat{C_1}=30^0\)

Cạnh BC chung

=> \(\Delta DBC=\Delta ECB\left(g-c-g\right).\)

=> \(CD=EB\) (2 cạnh tương ứng)

Ta có: \(AD=AC\left(gt\right)\)

=> \(A\) là trung điểm của \(CD.\)

=> \(AC=\frac{1}{2}CD\) (tính chất trung điểm)

\(CD=EB\left(cmt\right)\)

=> \(AC=\frac{1}{2}EB\left(đpcm\right).\)

Chúc bạn học tốt!

2 tháng 11 2019

Chương I : Số hữu tỉ. Số thựcChương I : Số hữu tỉ. Số thựcChương I : Số hữu tỉ. Số thực

27 tháng 4 2020

Miyuki Misaki Bạn giúp được phần d hộ bạn hỏi được không?

27 tháng 4 2020

Anne Amora mình chx hok hình chiếu :v Nên k chắc nx :)) Bạn cs hình k ạ >?

a; Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABM=ΔACN

Suy ra: BM=CN

b: Ta có: ΔABM=ΔACN

nên AM=AN 

hay ΔAMN cân tại A

22 tháng 1 2022

Bạn tự vẽ hình nhé ^ ^ 

a/ Ta có : \(\Delta ABC\) cân tại A \(\Leftrightarrow\widehat{B}=\widehat{C}\)

Xét \(\Delta BCN;\Delta CBM\) có :

\(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\\BCchung\\\widehat{BNC}=\widehat{BMC}=90^0\end{matrix}\right.\)

\(\Leftrightarrow\Delta BCN=\Delta CBM\left(ch-gn\right)\)

\(\Leftrightarrow BM=CN\)

b/ Xét \(\Delta ABM;\Delta ACN\) có :

\(\left\{{}\begin{matrix}\widehat{A}chung\\\widehat{BMA}=\widehat{ANC}=90^0\\BM=CN\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABM=\Delta ACN\left(ch-gn\right)\)

\(\Leftrightarrow AM=AN\)

\(\Leftrightarrow\Delta AMN\) cân

10 tháng 2 2020

A B C H M N

- Ta có : \(\Delta ABC\) cân tại A .

=> AB = AC ( Tính chất tam giác cân )

=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )

- Xét \(\Delta AHB\)\(\Delta AHC\) có :

\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)

=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )

b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )

=> BH = CH ( cạnh tương ứng )

- Xét \(\Delta HMB\)\(\Delta HNC\) có :

\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )

=> MB = NC ( cạnh tương ứng )

Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)

Mà AB = AC (tam giác cân )

=> \(AM=AN\)

- Xét \(\Delta AMN\) có : AM = AN ( cmt )

=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )

c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )

=> \(\widehat{AMN}=\widehat{ANM}\)

\(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)

=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)

=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )

- Ta có : \(\Delta ABC\) cân tại A .

=> \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)

=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )

Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)

Mà 2 góc trên ở vị trí đồng vị .

=> MN // BC ( Tính chất 2 đoạn thẳng song song )

10 tháng 2 2020

d, ( Hình vẽ câu trên nha )

- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :

\(AH^2+BH^2=AB^2\)

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN

Xét ΔAMD và ΔAND có

AM=AN

\(\widehat{MAD}=\widehat{NAD}\)

AD chung

Do đó: ΔAMD=ΔAND

=>\(\widehat{AMD}=\widehat{AND}\)

mà \(\widehat{AMD}=90^0\)

nên \(\widehat{AND}=90^0\)

=>DN\(\perp\)AC

c: Xét ΔKCD và ΔKNE có

KC=KN

\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)

KD=KE

Do đó: ΔKCD=ΔKNE

d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

Ta có: ΔKCD=ΔKNE

=>\(\widehat{KCD}=\widehat{KNE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên NE//DC

=>NE//BC

ta có: NE//BC

MN//BC

NE,MN có điểm chung là N

Do đó: M,N,E thẳng hàng

5 tháng 4 2017

A B C P K H M I a,Xét tam giác ABM=ACM có

góc B = góc C (gt)

BM=MC(gt)

AB=AC(gt)

Vậy tam giác ABM = ACM (C-G-C)

Vì MH vuông với AB,MK vuông góc với AC và tam giác ABC cân

=)góc HMB=góc KMC

b, Xét tam giác HBM và KCM có:

BM=MC(gt)

góc HMB=góc KMC

Vậy tam giác HBM=KCM(cạnh huyền góc nhọn)

=)BH = CK (2 cạnh tưng ứng)

c,

\(\widehat{ABM}=\widehat{ACM}\)

\(90^0-\widehat{ABM}=90^0-\widehat{ACM}\)

\(\Leftrightarrow\widehat{IBM}=\widehat{IMB}\)

Vậy tam giác IBM cân tại I.

5 tháng 4 2017

Like cho bạn với nha !!!!