Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)
Bài 5:
\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)
mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25
a, Ta có: \(\left(x+1\right)^2\ge0\)
\(\Rightarrow2\left(x+1\right)^2\ge0\)
\(\Rightarrow2\left(x+1\right)^2-17\ge-17\)
\(\Rightarrow B\ge-17\)
Dấu "=" xảy ra <=> (x+1)2 = 0 <=> x = -1
Vậy GTNN của B là -17 khi x = -1
b, Ta có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow25-\left(x-2\right)^2\ge25\)
\(\Rightarrow B\ge25\)
Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x = 2
Vậy GTLN của B là 25 khi x = 2
a, Giá trị nhỏ nhất là 20
b, giá trị nhỏ nhất là 17
c,Giá trị nhỏ nhất là 30
a, /x/+20
/x/> hoặc bằng 0 với mọi x
/x/+20 > hoặc bằng 20 với mọi x
=> A> hoặc bằng 20
dấu"=" xảy ra khi /x/+20=0 => x+20=0 => x=-20
Vạy min A =20 khi x=-20
a) \(A=2x^2-15\ge-15\forall x\)
\(minA=-15\Leftrightarrow x=0\)
b) \(B=2\left(x+1\right)^2-17\ge-17\forall x\)
\(minB=-17\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Bạn nên nhớ GTTĐ cuả một số của một số bất kì luôn lớn hơn hoặc bằng 0
Bình phương của một số cũng vậy.
1. a) do |x-3| >= 0 với mọi x
nên (-18 + |x-3| ) >= -18
Vậy GTNN của A là -18. Dấu bằng xảy ra khi x - 3 = 0.
câu này phải là GTLN nhé bạn
b) tương tự x2 >= 0 với mọi giá trị của x
=> -x2 <= 0 với mọi x
nên 14 + (-x2) <= 14 hay B<= 14
Vậy GTLN của B là 14. dấu bằng xảy ra khi x2= 0 hay x = 0
c) (x+1)2 >= 0 với mọi x nên 2(x+1)2 >= 0
suy ra C>= -17
dấu = xảy ra khi x + 1 = 0 hay x = -1
bài 2.
a) |a - 30| >=0 với mọi... nên -|a-30|<= 0
|b + 20| >=0 nên -|b+20|<= 0
vây A <= 0 + 0+ 2011 = 2011
vậy GTLN của A là 2011 khi a-30=0 và b+20 = 0 hay a = 30 và b = -20
b)
c) (x-2)2>=0 nên -(x-2)2<=0
vậy C <= 25 + 0 = 25
dấu =.... khi x - 2 = 0 hay x = 2
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
a) Để A có giá trị nhỏ nhất thì (x-7)2 < 0
Hay (x-7)2+ 2003 < 2003
Vì (x-7)2 luôn dương => GTNN của (x-7)2+ 2003 = 2003
Dấu = chỉ xảy ra khi (x-7)2=0
=> x-7 =0
x = 7
Vây GTNN của A = 2003 <=> x=7
b) Để B có GTLN thì -(x+2)2 > 0
Hay -(x+2)2+17 > 17
x thuộc tập N
a) Ta có (x-7)2 >=0 với mọi x thuộc Z
=> (x-7)2 +2003 >= 2003 với mọi z thuộc Z
hay A >= 2003
Dấu "=" xảy ra <=> (x-7)2=0 <=> x-7=0 <=> x=7
Vậy Min A=2003 đạt được khi x=7
b) Ta có -(x+2)2 =< 0 với mọi x thuộc Z
=> -(x+2)2+17 =< 17 với mọi x thuộc Z
hay B =< 17
Dấu "=" <=> -(x+2)2=0
<=> x+2=0
<=> x=-2
Vậy MaxB=17 đạt được khi x=-2
\(A=\left(-7\right)+\left(x+1\right)^2\)
Nhận xét: \(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(-7\right)+\left(x+1\right)^2\ge-7\)
hay \(A\ge-7\)
Dấu "=" xảy ra khi:
\(x+1=0\)
\(\Rightarrow x=-1\)
Vậy...
\(B=\left(x-2\right)^2-17\)
Nhận xét: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2-17\ge-17\)
hay \(A\ge-17\)
Dấu "=" xảy ra khi:
\(x-2=0\)
\(\Rightarrow x=2\)
Vậy...