K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )

=>đpcm

25 tháng 12 2019

Cô si

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)

Cộng lại ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)

31 tháng 10 2017

a)\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)\(\Leftrightarrow\dfrac{a^2+ab+b^2}{4}\ge0\)\(\Leftrightarrow\dfrac{\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}}{4}\ge0\left(đpcm\right)\)

Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

31 tháng 10 2017

b) Áp dụng Cauchy, ta có:

\(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ca}{b}}=2c\)

Tương tự: \(\dfrac{ca}{b}+\dfrac{ab}{c}\ge2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)

Cộng vế theo vế các BĐT vừa chứng minh rồi rút gọn ta được đpcm.

18 tháng 2 2022

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

15 tháng 2 2016

ôi dào !dễ ợt ! cô em mới cho học ngày hôm qua !k đi rùi em trình bày cho cách làm !

2 tháng 9 2016

Ta có 15P = 3a5b \(\le\)\(\frac{9a^2+25b^2}{2}\)

\(\frac{\left(3a+5b\right)^2-30ab}{2}\)

=> 30P \(\le\)\(\frac{12^2}{2}\)

=> P \(\le\)\(\frac{12}{5}\)

Đạt được khi a = 2; b = \(\frac{6}{5}\)

9 tháng 8 2019

<=>  \(a+b\ge2\sqrt{ab}\)

<=> \(a+b-2\sqrt{ab}\ge0\)

<=. \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng )

dấu = khi a=b

23 tháng 8 2020

Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)  (áp dụng Bất Đẳng Thức Cosi)

\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)

\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)

Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)

Dấu "=" xảy ra khi a=b=c

28 tháng 11 2019

Chỉ cần chú ý:

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)

Từ đó thiết lập 2 BĐT còn lại tương tự rồi cộng theo vế thu được đpcm.

28 tháng 11 2019

Áp dụng BĐT Bunhiacopxky :

\(\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\left(abc+abc+abc\right)\ge\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\frac{\left(ab+bc+ac\right)^2}{3abc}\left(1\right)\)

Áp dụng BĐT Cauchy 

\(\hept{\begin{cases}a^2b^2+b^2c^2\ge2ab^2c\\a^2b^2+c^2a^2\ge2a^2bc\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\\b^2c^2+c^2a^2\ge2abc^2\end{cases}}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2\ge3\left(a+b+c\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

24 tháng 8 2016

Ta có \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}.\)