K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

a)

Ta có : (6x+11y) chia hết cho 31

=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x+7y) chia hết cho 31

=> x+7y chia hết cho 31 

29 tháng 3 2016

b) 

3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803. 
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

15 tháng 1 2018

Bài 1

Vì 6x+11y chia hết cho 31

=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)

15 tháng 1 2018

Bài 3

n 2 + 3n - 13 chia hết cho n + 3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 thuộc Ư(13)={-1;1;-13;13}

=>n thuộc{-4;-2;-16;10}

n 2 + 3 chia hết cho n - 1

ta có: n-1 chia hết cho n-1

=>(n-1)(n+1) chia hết cho n-1

=>n^2+n-n-1 chia hết cho n-1

=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1

=>(n^2+3)-(n^2-1) chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}

=> n thuộc {0;2;-1;3;-3

11 tháng 1 2018

Đặt A=6(x+7y)−(6x+11y)

=6x+42y−6x−11y

=3y

Do 31y⋮31

6x+11y⋮31⇒6(x+7y)⋮31

Vì 6(x+7y)⋮31⇒x+7y⋮31

Vậy nếu 6x+11y⋮31⇒x+7y⋮31(Đpcm)

11 tháng 1 2018

đặt A=6(x+7y)-(6x+11y)

=6x +42y-6x-11y

=31y

do 31y chia hết cho 31

6x+11y chia hết cho 31=>6(x+7y) chia hết cho 31

do (6,31)=1=>x+7y chia hết cho 31

vậy nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

14 tháng 11 2016

\(ĐK:x;y;z\in Z\)

Xét hiệu: (x3 + y3 + z3) - (x + y + z) 

= (x3 - x) + (y3 - y) + (z3 - z)

= x.(x2 - 1) + y.(y2 - 1) + z.(z2 - 1)

= x.(x - 1).(x + 1) + y.(y - 1).(y + 1) + z.(z - 1).(z + 1)

Dễ thấy x.(x - 1).(x + 1); y.(y - 1).(y + 1); z.(z - 1).(z + 1) đều là tích 3 số nguyên liên tiếp nên 3 tích này đều chia hết cho 2 và 3

Mà (2;3)=1 nên mỗi tích này chia hết cho 6

=> (x3 + y3 + z3) - (x + y + z) chia hết cho 6

Như vậy nếu x3 + y3 + z3 chia hết cho 6 thì x + y + z chia hết cho 6 và ngược lại (đpcm)

15 tháng 11 2016

bài này  mà lớp 7 thì khó đây , nhưng lớp 8,9 lại ưa dễ

19 tháng 4 2019

Ta có: 87 - 218 = (23)7 - 218 = 221 – 218 = 217.( 24 -2)= 217.(16 - 2) = 24.14 ⋮ 14