Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
\(b,\)\(\sqrt{\frac{2}{x^2}}\)
Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ
\(\Rightarrow x^2\ne0\)
\(\Rightarrow x\ne0\)
a) \(\sqrt{\frac{-5}{x^2+6}}\)
Để biểu thức có nghĩa thì \(x^2+6< 0\)
Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)
Vậy biểu thức này không xác định
\(\sqrt{15}-\sqrt{12}=\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)=\sqrt{3}\left(\sqrt{5}-2\right)\)
Thế vì sao lại đc √3(√5−√4) rồi công thức nào để đc √3(√5−2) ạ
hệ thức 3 không có nghĩa vì trong căn không dduocj âm mà -5^2=-36 là âm nên không có nghĩa