K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

 Phương trình bậc hai a x 2   +   b x   +   c   =   0   sẽ có hai nghiệm phân biệt trái dấu khi và chỉ khi ac < 0.

 Nếu m = 1 hoặc m = -1 thì phương trỉnh đã cho có nghiệm duy nhất (loại).

     ( m 2   -   1 ) ( m 2   +   m )   <   0   ⇔   ( m   +   1 ) 2 m ( m   -   1 ) < 0

    ⇔ 0 < m < 1

22 tháng 9 2017

x 2   -   ( m 3   +   m   -   2 ) x   +   m 2   +   m   -   5  = 0 có hai nghiệm phân biệt trái dấu khi và chỉ khi m 2   +   m   -   5   <   0  

Giải sách bài tập Toán 10 | Giải sbt Toán 10

NV
3 tháng 5 2021

Phương trình đã cho có 2 nghiệm trái dấu khi và chỉ khi:

\(ac< 0\Leftrightarrow-2\left(m^2-5m+4\right)< 0\)

\(\Leftrightarrow m^2-5m+4>0\Rightarrow\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\)

Với m=−1 thì PT f(x)=0 có nghiệm x=1 (chọn)

Với m≠−1 thì f(x) là đa thức bậc 2 ẩn x

f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0

⇔−m2−2m≥0⇔m(m+2)≤0

⇔−2≤m≤0

Tóm lại để f(x)=0 có nghiệm thì 

18 tháng 1 2022

a = -2 < 0 rồi, xét Δ không dương nữa là xong

Trường hợp 1: m=0

Phương trình sẽ là \(-2\cdot\left(-1\right)x+0-2=0\)

=>2x-2=0

=>x=1

=>Loại

Trường hợp 2: m<>0

Để phương trình có hai nghiệm trái dấu thì m(m-2)<0

=>0<m<2

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

NV
30 tháng 4 2021

Pt đã cho có 2 nghiệm trái dấu khi và chỉ khi:

\(ac< 0\Leftrightarrow1\left(m^2-4m\right)< 0\)

\(\Leftrightarrow0< m< 4\)

30 tháng 4 2021

cảm ơn nhìu ạ !