Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình bậc hai a x 2 + b x + c = 0 sẽ có hai nghiệm phân biệt trái dấu khi và chỉ khi ac < 0.
Nếu m = 1 hoặc m = -1 thì phương trỉnh đã cho có nghiệm duy nhất (loại).
( m 2 - 1 ) ( m 2 + m ) < 0 ⇔ ( m + 1 ) 2 m ( m - 1 ) < 0
⇔ 0 < m < 1
x 2 - ( m 3 + m - 2 ) x + m 2 + m - 5 = 0 có hai nghiệm phân biệt trái dấu khi và chỉ khi m 2 + m - 5 < 0
Phương trình đã cho có 2 nghiệm trái dấu khi và chỉ khi:
\(ac< 0\Leftrightarrow-2\left(m^2-5m+4\right)< 0\)
\(\Leftrightarrow m^2-5m+4>0\Rightarrow\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\)
Với thì PT có nghiệm (chọn)
Với thì là đa thức bậc 2 ẩn
có nghiệm khi mà
Tóm lại để có nghiệm thì
Trường hợp 1: m=0
Phương trình sẽ là \(-2\cdot\left(-1\right)x+0-2=0\)
=>2x-2=0
=>x=1
=>Loại
Trường hợp 2: m<>0
Để phương trình có hai nghiệm trái dấu thì m(m-2)<0
=>0<m<2
a: Để phương trình có hai nghiệm trái dấu thì m+2<0
hay m<-2
Pt đã cho có 2 nghiệm trái dấu khi và chỉ khi:
\(ac< 0\Leftrightarrow1\left(m^2-4m\right)< 0\)
\(\Leftrightarrow0< m< 4\)