Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với x,y > 0.
Thật vậy: \(x+y+z\ge3\sqrt[3]{xyz}\)(bđt Cô -si)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\)(bđt Cô -si)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(Dấu "="\(\Leftrightarrow x=y=z\))
Ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
(Dấu "=" xảy ra khi a = b)
Tương tự ta có:\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)(Dấu "=" xảy ra khi b=c)
\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)(Dấu "=" xảy ra khi c=a)
\(VT=\text{Σ}_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
(Dấu "=" xảy ra khi \(a=b=c=\frac{3}{2}\))
với mọi x,y,z >0 ta có: \(x+y+z\ge3\sqrt[3]{xyz};\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
đẳng thức xảy ra khi x=y=z
ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
đẳng thức xảy ra khi a=b
tương tự: \(\frac{1}{\sqrt{5b^2+2ab+2b^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)
đẳng thức xảy ra khi b=c
\(\frac{1}{\sqrt{5c^2+2bc+2c^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
đẳng thức xảy ra khi c=a
Vậy \(\frac{1}{\sqrt{5a^2+2ca+2a^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
đẳng thức xảy ra khi a=b=c=\(\frac{3}{2}\)
ÁP dụng BĐT AM-Gm ta có:
\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)
ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm
\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)
\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)
Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)
\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)
Đúng hay ta có ĐPCM xyar ra khi a=b=c=1
Cách : AM - GM :
\(VT=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)\left(1\right)\)
Áp dụng BĐT AM - GM :
\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)
\(\le\frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^aa^4}}=\frac{2}{3}\left(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}\right)\)
\(\le\frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}\left(a+b+c\right)=2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT\ge3-2=1\left(đpcm\right)\)
Ta sẽ chứng minh :
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) với x, y > 0
Thật vậy : \(x+y+z\ge3\sqrt[3]{xyz}\)( bđt Cô - si )
Và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\) ( bđt Cô - si )
\(\Rightarrow x+y+z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( Dấu " = " \(\Leftrightarrow x=y=z\) )
Ta có :
\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
( Dấu " = " xay ra khi a=b)
Tương tự ta cũng có :
\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\) ( Dấu " = " xảy ra khi b=c)
\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\) ( Dấu " = " xay ra khi c = a )
\(VT=\sum_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu " = " xay ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!
\(\frac{1}{\sqrt{4a^2+2ab+b^2+a^2+b^2}}\le\frac{1}{\sqrt{4a^2+2ab+b^2+2ab}}=\frac{1}{\sqrt{\left(2a+b\right)^2}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow VT\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}+\frac{2}{b}+\frac{1}{c}+\frac{2}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
Áp dụng BĐT Cauchy-SChwarz ta có:
\(VT=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(ab+bc+ca\right)^2}{3}}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(a^2+b^2+c^2\right)^2}{3}}\)
\(\ge\frac{1^2}{1+2\cdot\frac{1^2}{3}}=\frac{3}{5}=VP\)
Dấu "=" bạn tự nghiên cứu nhé :D
DẤU BẰNG XẢY RA\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\) CÁI NÀY LÀ ĐIỂM RƠI NHÉ.
Lời giải:
Ta thấy:
\(\text{VT}=\frac{c^2}{2ab^2c^2+c^2}+\frac{a^2}{2bc^2a^2+a^2}+\frac{b^2}{2ca^2b^2+b^2}\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}(2ab^2c^2+c^2+2bc^2a^2+a^2+2ca^2b^2+b^2)\geq (c+a+b)^2\)
\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}(*)\)
Áp dụng BĐT Am-GM:
\(3=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 1\)
\(\Rightarrow 2abc(ab+bc+ac)\leq 2(ab+bc+ac)\)
\(\Rightarrow \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)+a^2+b^2+c^2}=1(**)\)
Từ \((*); (**)\Rightarrow \text{VT}\geq 1\)
Ta có đpcm. Dấu "=" xảy ra khi $a=b=c=1$
Cách khác bằng AM-GM:
\(\text{VT}=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)(1)\)
Áp dụng BĐT AM-GM:
\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)
\(\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^2a^4}}=\frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)
\(\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}(a+b+c)=2(2)\)
Từ \((1);(2)\Rightarrow \text{VT}\geq 3-2=1\) (đpcm)
Ta có: \(5a^2+2ab+2b^2=4a^2+2ab+b^2+\left(a^2+b^2\right)\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Lại có: \(\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)
Tương tự cộng lại ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo BĐT Bunhiacopxki ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}\)
\(\Rightarrow VT\le\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\)
Dấu = xảy ra khi \(a=b=c=\sqrt{3}\)
\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế với vế:
\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)
Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)