K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

Nâng cao và phát triển toán 8 tập 1 bài 153*

10 tháng 8 2018

Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi

Ta có: a+b+c=0 => a+b=-c

=>(a+b)2=(-c)2

=>a2+2ab+b2=c2

=>a2+b2-c2=-2ab

Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca

=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)

31 tháng 8 2018

Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.

Ta có: \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)

\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)

8 tháng 3 2021

tên sai kìa,EKAWADA CONAN mà

8 tháng 3 2021

Ta có :\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)

=> \(a\left(\frac{a}{b+c}\right)+b\left(\frac{b}{a+c}\right)+c\left(\frac{c}{a+b}\right)=0\)

=> \(a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{a+c}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)=0\)

=> \(a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{a+c}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)=0\)

=> \(a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{a+c}-b+c.\frac{a+b+c}{a+b}-c=0\)

=> \(\left(a+b+c\right).\frac{a}{b+c}+\left(a+b+c\right).\frac{b}{a+c}+\left(a+b+c\right).\frac{c}{a+b}-\left(a+b+c\right)=0\)

=> \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-1\right)=0\)

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-1=0\left(\text{Vì }a+b+c\ne0\right)\)

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)(đpcm)