Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)
Tương tự ta có :
\(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)
\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{12}\)
Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)
Ta có : \(ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z^2\right)}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)
\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
Ta có : \(ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}\end{cases}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)
\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{2}\)
Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(P\geq \frac{1}{2}\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2+\frac{1}{(a-c)^2}=\frac{(c-a)^2}{2(b-a)^2(c-b)^2}+\frac{1}{(c-a)^2}\)
Đặt $b-a=x; c-b=y(x,y>0)$ thì $c-a=x+y$. Khi đó: $P\geq \frac{(x+y)^2}{2x^2y^2}+\frac{1}{(x+y)^2}$
Vì $0\leq a< c\leq 2\Rightarrow x+y=c-a\in (0;2]$
$\Rightarrow (x+y)^2\leq 4$
$\Rightarrow 4xy\leq (x+y)^2\leq 4\Rightarrow xy\leq 1$
Do đó:
$P=\frac{7(x+y)^2}{16x^2y^2}+\frac{(x+y)^2}{16x^2y^2}+\frac{1}{(x+y)^2}\geq \frac{7.4xy}{16x^2y^2}+2\sqrt{\frac{1}{16x^2y^2}}$
$=\frac{7}{4xy}+\frac{1}{2xy}=\frac{9}{4xy}\geq \frac{9}{4}$ do $xy\leq 1$
Vậy $P_{\min}=\frac{9}{4}$
Cái này có vẻ không liên quan đến bài toán đang đề cập // Bạn tránh spam những thứ không liên quan. Mình sẽ xóa bài spam sau khi bạn đọc được những dòng này.