Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x + y)x \(\le2x\) <=> \(2x^2+xy\le2x\)(1)
Vì \(0\le x\le y\Leftrightarrow y-x\ge0\) mà \(y\le1\Rightarrow\left(y-x\right)y\le y-x\) (2)
Lấy (1) + (2) => \(2x^2+y^2\le x+y\)
áp dụng BĐT bun nhi a cốp xki :
\(\left(2x^2+y^2\right)^2\le\left(x+y\right)^2=\left(\frac{1}{\sqrt{2}}\sqrt{2}x+1\cdot y\right)^2\le\left(2x^2+y^2\right)\left(\frac{1}{2}+1\right)\)
Vì \(2x^2+y^2\ge0\) chia cả hai vế cho 2x^ 2 + y^2 ta đc ĐPCM . Dấu = xảy ra khi .... ( tự tìm )
BĐT bên trái rất đơn giản, chỉ cần áp dụng:
\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được
Ta chứng minh BĐT bên phải:
\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
Thật vậy, ta có:
\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)
\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)
\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị
Với \(0\le x;y\le1\) ta có:
\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)
Dấu "=" xảy ra <=> x = y = 1
Có: \(0\le x;y\le1\)
=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)
\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)
\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)
=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)
Dấu "=" xảy ra x<=> = y =1
Ta có \(2\left(2x^2+y^2\right)=4x^2+2y^2=\left(2x+y\right)^2+y^2-4xy=4+y\left(y-4x\right)\)
\(=4+y\left(3y-4\right)=4+3y^2-4y=3+\left(y-1\right)\left(3y-1\right)\)
Vì \(0\le x\le y\le1\to3y\ge2\to y\ge\frac{2}{3}\to3y-1\ge1>0.\) Thành thử \(\left(y-1\right)\left(3y-1\right)\le0.\) Vậy \(2\left(2x^2+y^2\right)\le3\to2x^2+y^2\le\frac{3}{2}.\) Dấu bằng xảy ra khi và chỉ khi \(y=1,x=\frac{1}{2}.\)