Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
`7,`
`a,`
\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)
\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)
`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`
`M(x)=-3x^5+9x^4+6x-1`
\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)
\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)
`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`
`N(x)=3x^5-9x^4+3x-5`
`b,`
`H(x)=M(x)+N(x)`
\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)
`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`
`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`
`H(x)=9x-6`
`G(x)=M(x)-N(x)`
\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)
`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`
`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`
`G(x)=-6x^5+18x^4+3x+4`
`c,`
`H(x)=9x-6`
Hệ số cao nhất của đa thức: `9`
Hệ số tự do: `-6`
`G(x)=-6x^5+18x^4+3x+4`
Hệ số cao nhất của đa thức: `-6`
Hệ số tự do: `4`
`d,`
`H(-1)=9*(-1)-6=-9-6=-15`
`H(1)=9*1-6=9-6=3`
`G(1)=-6*1^5+18*1^4+3*1+4`
`G(1)=-6+18+3+4=12+3+4=15+4=19`
`G(0)=-6*0^5+18*0^4+3*0+4=4`
`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`
`e,`
Đặt `H(x)=9x-6=0`
`-> 9x=0+6`
`-> 9x=6`
`-> x=6 \div 9`
`-> x=2/3`
Vậy, nghiệm của đa thức là `x=2/3.`
\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)
\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x+6\)
\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)
\(=6x^4-4x^3+10x^2-11x-4\)
A(x)=x^4+3x^4-3x^3+5x^3+2x^2-6x+x-1
=4x^4+2x^3+2x^2-5x-1
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
`Answer:`
\(f\left(x\right)=5x-3x^2+2x^4-3x-x^4-5\)
\(=\left(2x^4-x^4\right)-3x^2+\left(5x-3x\right)-5\)
\(=x^4-3x^2+2x-5\)
\(g\left(x\right)=-2x^3+10x-1-7x^2+x^4-15x+10x^2\)
\(=x^4-2x^3+\left(-7x^2+10x^2\right)+\left(10x-15x\right)-1\)
\(=x^4-2x^3+3x^2-5x-1\)
\(f\left(x\right)+g\left(x\right)=\left(x^4-3x^2+2x-5\right)+\left(x^4-2x^3+3x^2-5x-1\right)\)
\(=\left(x^4+x^4\right)-2x^3+\left(-3x^2+3x^2\right)+\left(2x-5x\right)+\left(-5-1\right)\)
\(=2x^4-2x^3-3x-6\)
Bài làm:
Ta có:
\(f\left(x\right)=x^3-3x^2+2x-5+x^2\)
\(f\left(x\right)=x^3-2x^2+2x-5\)
Và:
\(g\left(x\right)=-x^3-5x+3x^2+3x+4\)
\(g\left(x\right)=-x^3+3x^2-2x+4\)
Chúc bạn học tốt!
a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1
=-x^4-5x^3-7x^2+2x-1
Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5
=x^4+5x^3+6x^2-2x+5