K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Kẻ BD vuông góc AC,CE vuông góc AB

góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc AED=góc ACB

=>ΔAED đồng dạng vơi ΔACB

Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC

Gọi H là giao của BD và CE

=>AH vuông góc BC tại N

Gọi giao của OM với (O) là A'

ΔOBC cân tại O

=>OM vuông góc BC

AN<=A'M ko đổi

=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)

Dấu = xảy ra khi A trùng A'

=>A là điểm chính giữa của cung BC

 

28 tháng 10 2017

Ta có ABCD là hình thang vuông tại C và D

Mà O Là trung điểm AB và OM vuông góc với CD( tiếp tuyến của (O)

=> AD+BC=2OM=2R.  Chú ý rằng CD ≤ AB (hình chiếu đường xiên)

=>  S A B C D = 1 2 A D + B C . C D

= R.CD ≤ R.AB = 2 R 2

Do đó S A B C D  lớn nhất khi CD=AB hay M là điểm chính giữa nửa đường tròn đường kính AB