Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2x^2-3x+1+3x^2+2x-1=5x^2-x\)
b: \(=4x^3-2x^2+3x-2x^3-3x^2+4x=2x^3-5x^2+7x\)
c: \(=x^2-5x+6-3x^2+2x-1=-2x^2-3x+5\)
d: \(=2x^3+5x^2-3x+1-x^3+2x^2-x+1\)
\(=x^3+7x^2-4x+2\)
e: \(=3x^2+2x-4+4x^2-x+5=7x^2+x+1\)
f: \(=x^3-2x^2+5x-1-2x^3-3x^2+4x-2=-x^3-5x^2+9x-3\)
g: \(=4x^4-3x^3+x^2+2x-1+2x^3-4x^2+3x-1\)
\(=4x^4-x^3-3x^2+5x-2\)
+) Vì y và x tỉ lệ thuận với nhau nên:
\(y=kx\)
\(\Rightarrow y_1=k\cdot x_1\)
hay \(6=k\cdot3\)
\(\Rightarrow k=2\)
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé