Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hai đường cắt nhau thì 1/m<>m/4
=>m2<>4
hay \(m\notin\left\{2;-2\right\}\)
b: Để hai đường song song thì 1/m=m/4
hay \(m\in\left\{2;-2\right\}\)
a.
Hai đường thẳng song song khi:
\(\dfrac{m+3}{2}=\dfrac{3}{2}\ne\dfrac{-2m+3}{2-3m}\)
\(\Leftrightarrow m=0\)
b.
Hai đường thẳng trùng nhau khi: \(\dfrac{m+3}{2}=\dfrac{3}{2}=\dfrac{-2m+3}{2-3m}\Rightarrow\) ko tồn tại m thỏa mãn
Vậy 2 đường thẳng cắt nhau khi \(m\ne0\)
Khoảng cách AM là nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của A lên \(\Delta\)
Gọi d là đường thẳng qua A và vuông góc \(\Delta\Rightarrow\) d nhận \(\left(1;-1\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)
M là giao điểm của d và \(\Delta\) nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x+y-2=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)
Lời giải:
Gọi đường thẳng qua $A$ giao với $y=6; x=2$ tạo thành tgv cân có dạng là $(d):y=ax+5-3a$ với $a\neq 0$
Giao của $(d)$ với $y=6$ là $A$. Có $y_A=6$ nên $x_A=\frac{1+3a}{a}$
Giao của $(d)$ với $x=2$ là $B$. Có $x_B=2$ nên $y_B=5-a$
Giao của $y=6; x=2$ là $C(2,6)$
Để $ABC$ là tam giác vuông cân tại $C$ thì: $AC=BC$
$\Leftrightarrow |\frac{1+3a}{a}-2|=|5-a-6|$
$\Leftrightarrow |\frac{1}{a}+1|=|a+1|$
$\Leftrightarrow |\frac{a+1}{a}|=|a+1|$
$\Rightarrow a=-1$ hoặc $a=1$
Vậy có 2 đt thỏa mãn
Đáp án C
Đường tròn (C) có tâm I( -1 ; 3) và bán kính R= 2
Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.
Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).
Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0
=> c = 15
Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.