K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu

8 tháng 1

\(a^2+c^2=b^2+d^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)

Ta có

\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta thấy 

\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2

\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)

Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)

\(\Rightarrow a+b+c+d⋮2\)

Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2

=> a+b+c+d là hợp số

8 tháng 1

A = [(a +b) + (c + d)].[(a + b) + (c + d)]

A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)

A  = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2

A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd

A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]

A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]

⇒ A ⋮ 2  ⇒ a + b + c + d  ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2

Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)

 

7 tháng 10 2018

AI NHANH MÌNH K , ĐANG CẦN GẤP

7 tháng 10 2018

a)xét 2A =2+2^2+2^3+.....+2^2019

-A=1+2+2^2+...+2^2018

A=(2^2019)-1 <2^2019

b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)

2019=x+1 =>x=2018

13 tháng 9 2023

Để chứng minh rằng không tồn tại các số tự nhiên a, b, c, d thỏa mãn adcb = 12345 và a^2 = b^2 + c^2 + d^2, ta có thể sử dụng phương pháp phản chứng (proof by contradiction). Giả sử rằng tồn tại các số tự nhiên a, b, c, d thỏa mãn hai điều kiện trên. Từ a^2 = b^2 + c^2 + d^2, ta có thể suy ra rằng a^2 là một số chẵn (vì tổng của các số bình phương là số chẵn). Do đó, a cũng phải là một số chẵn. Tuy nhiên, khi nhân các số a, b, c, d lại với nhau theo thứ tự adcb, ta có một số lẻ (12345). Điều này chỉ có thể xảy ra khi ít nhất một trong các số a, b, c, d là số lẻ. Nhưng theo giả thiết, a là số chẵn. Điều này dẫn đến mâu thuẫn với giả thiết ban đầu, khiến cho giả thiết không thể đúng. Vì vậy, không tồn tại các số tự nhiên a, b, c, d thỏa mãn adcb = 12345 và a^2 = b^2 + c^2 + d^2.

22 tháng 9 2016

\(A=1+2+2^2+2^3+...+2^{1016}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2016}\right)\)

\(2A=2+2^2+2^3+2^4+...+2^{2017}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)

\(A=2^{2017}-1\)

\(B=2^{2017}\)

=> A và B là hai số tự nhiên liên tiếp