K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

có nick violympic v11 k?

6 tháng 1 2017

Ta có

\(x^2+x^2y^2-2y=0\)

\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\left(\left(y-1\right)^2\ge0\right)\)

\(\Leftrightarrow-1\le x\le1\)(1)

Ta lại có

\(x^3+2y^2-4y+3=0\)

\(\Leftrightarrow x^3=-2y^2+4y-3\)

\(=\left(-2y^2+4y-2\right)-1\)

\(=-1-2\left(y-1\right)^2\le-1\)

\(\Rightarrow x\le-1\)(2)

Từ (1) và (2) \(\Rightarrow x=-1\Rightarrow x^2=1\)

\(\Rightarrow y^2-2y+1=0\)

\(\Rightarrow y=1\Rightarrow y^2=1\)

\(\Rightarrow Q=x^2+y^2=1+1=2\)

7 tháng 3 2021

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

7 tháng 3 2021

tks nguoi ae

15 tháng 2 2017

Q=2

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:
$x^2+2y^2+x^2y^2-10xy+16=0$

$\Leftrightarrow (x^2+y^2-2xy)+(x^2y^2-8xy+16)+y^2=0$

$\Leftrightarrow (x-y)^2+(xy-4)^2+y^2=0$

Vì $(x-y)^2\geq 0; (xy-4)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(x-y)^2=(xy-4)^2=y^2=0$

$\Leftrightarrow x=y=0$ và $xy=4$ (vô lý)

Vậy không tồn tại $x,y$ thỏa mãn đề nên cũng không tồn tại $T$.

12 tháng 6 2023

 

Với x, y là hai số dương, dễ dàng chứng minh x + y  2,

do x + y = 2  => 0 < xy ≤ 1 (1)

Ta lại có: 2xy( x2 + y2) ≤ 

=> 0 < 2xy(x2 + y2)  ≤ (x+y)4/4 = 4

=> 0 < xy( x2 + y2) ≤ 2 (2)

Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)

Dấu “=” xảy ra khi x = y = 1

26 tháng 11 2015

25

cho mìn ****