Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2 + x2y2 - 2y = 0
\(\Rightarrow\)x2 + x2y2 + y2 - 2y + 1 - y2 - 1 = 0
\(\Rightarrow\)(x2 - 1) + (x2y2 - y2) + (y - 1)2 = 0
\(\Rightarrow\)(x2 - 1) + y2(x2 - 1) + (y - 1)2 = 0
\(\Rightarrow\)(x2 - 1)(1 + y2) + (y - 1)2 = 0
\(\Rightarrow\)(x2 - 1)(1 + y2) = -(y - 1)2 \(\le\)0 V y
\(\Rightarrow\)x2 - 1 \(\le\)0 V x ( vì 1 + y2 > 0 , V y )
\(\Rightarrow\)(x - 1)(x + 1) \(\le\)0
\(\Rightarrow\)x - 1 và x + 1 trái dấu
Do đó \(\hept{\begin{cases}x-1\ge0\\x+1\le0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge1\\x\le-1\end{cases}}\) ( vô lý )
Hoặc \(\hept{\begin{cases}x-1\le0\\x+1\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\le1\\x\ge-1\end{cases}}\) \(\Leftrightarrow\)-1\(\le\)x \(\le\)1 (*)
Lại có: x3 + 2y2 - 4y + 3 = 0
\(\Rightarrow\)(x3 + 1) + 2(y2 - 2y + 1) = 0
\(\Rightarrow\)(x3 + 1) + 2(y - 1)2 = 0
\(\Rightarrow\)x3 + 1 = -2(y - 1)2 \(\le\)0, V y
\(\Rightarrow\)x3 + 1 \(\le\)0, V x
\(\Rightarrow\)(x + 1)(x2 - x + 1) \(\le\)0
\(\Rightarrow\)x + 1 \(\le\)0 ( vì x2 - x + 1 = (x - 1/2 )2 + 3/4 > 0, V x )
\(\Rightarrow\)x \(\le\)-1 (**)
Từ (*) và (**) suy ra x = -1 \(\Rightarrow\)(-1)2 + (-1)2 . y2 - 2y = 0
\(\Rightarrow\)1 + y2 - 2y = 0
\(\Rightarrow\)( y - 1 )2 = 0 \(\Rightarrow\)y = 1
\(\Rightarrow\)x2 + y2 = (-1)2 + 12 = 2
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)
\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :
\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :
\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)
\(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)
\(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
Tương tự , chứng minh đc :
\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)
\(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)
\(\ge1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1
Ta có:
\(x^2+x^2y^2-2y=0\)
\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\)(cái này chứng minh đơn giản b tự làm lấy nhé)
\(\Leftrightarrow-1\le x\le1\left(1\right)\)
Ta lại có:
\(x^3+2y^2-4y+3=0\)
\(\Leftrightarrow x^3=-1-2\left(y-1\right)^2\le-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x=-1\)
\(\Rightarrow y=1\)
\(\Rightarrow x^2+y^2=1+1=2\)
kdfjeuy;r;