K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

ĐÁP ÁN B

Do d1 song song với d3 nên những điểm cách đều chúng nằm trên đường thẳng song song cách đều d1;d3.

Gọi khoảng cách hai đường thẳng d1, d3 là a > 0.

Khoảng cách giữa 2 đường thẳng ∆ và d1; ∆ và d3 là a/2  

Trên đường thẳng ∆ có hai điểm A, B  thỏa mãn  d A , d 2 = d B , d 2 = a 2

Khi đó, hai điểm A, B là hai điểm cần tìm

Số điểm M cách đề ba đường thẳng là 2.

M thuộc (d1) nên M(1-2t;1+t)

Theo đề, ta có: d(M;d2)=d(M;d3)

=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)

=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|

=>|-2t+3|=|-11t+3|

=>-2t+3=-11t+3 hoặc -2t+3=11t-3

=>t=0 hoặc t=6/13

=>M(1;1); M(1/13; 19/13)

27 tháng 7 2019

Do các đường thẳng đôi một cắt nhau tại các điểm A, B, C nên các điểm cách đều các cạnh gồm tâm đường tròn nội tiếp và ba tâm đường tròn bàng tiếp.

Vậy có tất cả 4 điểm  M cách đều ba đường thẳng đã cho.

đáp án D

NV
13 tháng 4 2019

Giao điểm A của d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-2y+5=0\\2x-3y+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow A\left(1;3\right)\)

Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt

Phương trình d:

\(3\left(x-1\right)+4\left(y-3\right)=0\Leftrightarrow3x+4y-15=0\)

18 tháng 5 2021

I I 1 I 2 d :3x-4y+1=0 1 d :6x+8y-1=0 2 p:3x+y-1=0

Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)

Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:

\(\frac{\left|3x-4y+1\right|}{5}=\frac{\left|6x+8y-1\right|}{10}\Leftrightarrow\orbr{\begin{cases}2\left(3x-4y+1\right)=6x+8y-1\\2\left(3x-4y+1\right)=-6x-8y+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}16y-3=0\\12x+1=0\end{cases}}\)

Xét hệ \(\hept{\begin{cases}3x+y-1=0\\16y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{48}\\y=\frac{3}{16}\end{cases}}\Rightarrow I_1\left(\frac{13}{48};\frac{3}{16}\right)\Rightarrow R_1=\frac{17}{80}\)

\(\Rightarrow\left(C_1\right):\left(x-\frac{13}{48}\right)^2+\left(y-\frac{3}{16}\right)^2=\frac{289}{6400}\)

Xét hệ: \(\hept{\begin{cases}3x+y-1=0\\12x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{12}\\y=\frac{5}{4}\end{cases}}}\Rightarrow I_2\left(-\frac{1}{12};\frac{5}{4}\right)\Rightarrow R_2=\frac{17}{20}\)

\(\Rightarrow\left(C_2\right):\left(x+\frac{1}{12}\right)^2+\left(y-\frac{5}{4}\right)^2=\frac{289}{400}\).

19 tháng 5 2021

Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)

Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:

|3x−4y+1|5 =|6x+8y−1|10 ⇔[

2(3x−4y+1)=6x+8y−1
2(3x−4y+1)=−6x−8y+1

⇔[

16y−3=0
12x+1=0

Xét hệ {

3x+y−1=0
16y−3=0

⇔{

x=1348 
y=316 

⇒I1(1348 ;316 )⇒R1=1780 

⇒(C1):(x−1348 )2+(y−316 )2=2896400 

Xét hệ: {

3x+y−1=0
12x+1=0

⇔{

x=−112 
y=54 

⇒I2(−112 ;54 )⇒R2=1720 

⇒(C2):(x+112 )2+(y−54 )2=289400 .

8 tháng 10 2019

Đáp án D

NV
22 tháng 3 2022

Lấy \(O\left(0;0\right)\) là 1 điểm thuộc \(d_2\)

\(\Rightarrow d\left(d_1;d_2\right)=d\left(O;d_1\right)=\dfrac{\left|6.0-8.0-101\right|}{\sqrt{6^2+\left(-8\right)^2}}=\dfrac{101}{10}\)

7 tháng 2 2018

Xét Δ và d1, hệ phương trình: Giải bài tập Toán 10 | Giải Toán lớp 10 có vô số nghiệm (do các hệ số của chúng tỉ lệ nên Δ ≡ d1.

Xét Δ và d2, hệ phương trình: Giải bài tập Toán 10 | Giải Toán lớp 10 có nghiệm duy nhất (-1/5; 2/5) nên

Δ cắt d2 tại điểm M(-1/5; 2/5).

Xét Δ và d3, hệ phương trình: Giải bài tập Toán 10 | Giải Toán lớp 10vô nghiệm

Vậy Δ // d3