Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết, với \(a+b+c=1\) ta có:
\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)
\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)
Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Từ đó:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow-3\le a+b+c\le3\)
\(T_{max}=3\) khi \(a=b=c=1\)
\(T_{min}=-3\) khi \(a=b=c=-1\)
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
Ta có: a + b + c = 0
\(\Rightarrow\) (a + b + c)2 = 0
\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0
\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)
\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\) (Vì a + b + c = 0)
Lại có: a2 + b2 + c2 = 2009
\(\Rightarrow\) (a2 + b2 + c2)2 = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5
Chúc bn học tốt!
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
Bài 8:
Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.
Tìm GTNN của F=a2+b2+x2+y2+bx+ayF=a2+b2+x2+y2+bx+ay
Lời giải:
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;
∑2a2−bcb2−bc+c2≥3∑2a2−bcb2−bc+c2≥3
Không mất tính tổng quát, ta có thể giả sử bb là số nằm giữa aa và cc
BĐT đã cho tương đương với
∑2a2+(b−c)2b2−bc+c2≥6∑2a2+(b−c)2b2−bc+c2≥6
Áp dụng BĐT Cauchy-Schwarz, ta có
∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a
∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a
Do đó ta chỉ cần chứng minh
(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)
Ta có
b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)
≥a2(b−c)2+c2(a−b)2≥a2(b−c)2+c2(a−b)2
Suy ra
2b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)22b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)2
⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a
Do đó ta chỉ còn phải chứng minh
(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a
⇔∑a4+abc∑a≥2∑a2b2⇔∑a4+abc∑a≥2∑a2b2
BĐT này hiển nhiên đúng theo BĐT Schur
∑a4+abc∑a≥∑ab(a2+b2)∑a4+abc∑a≥∑ab(a2+b2)
Và BĐT AM-GM
∑ab(a2+b2)≥2∑a2b2∑ab(a2+b2)≥2∑a2b2
Kết thúc chứng minh
Đẳng thức xảy ra khi a=b=ca=b=c hoặc a=ba=b, c=0c=0 và các hoán vị.
theo bđt bu-nhi-acop-xki cho 3 số :\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2.\) Ta có:
\(3P=\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2\Leftrightarrow3P\ge2010^2\Leftrightarrow P\ge1346700\)
Dấu "=" xảy ra khi a=b=c=670
=> Min P=1346700