Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta c/m bổ đề sau:
Với mọi số thực dương x;y ta luôn có:
\(x^4+y^4\ge xy\left(x^2+y^2\right)\)
Thật vậy, BĐT đã cho tương đương:
\(x^4-x^3y+y^4-xy^3\ge0\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)
Áp dụng bổ đề trên ta có:
\(T\le\dfrac{a}{bc\left(b^2+c^2\right)+a}+\dfrac{b}{ac\left(a^2+c^2\right)+b}+\dfrac{c}{ab\left(a^2+b^2\right)+c}\)
\(\Rightarrow T\le\dfrac{a^2}{abc\left(b^2+c^2\right)+a^2}+\dfrac{b^2}{abc\left(a^2+c^2\right)+b^2}+\dfrac{c^2}{abc\left(a^2+b^2\right)+c^2}\)
\(\Rightarrow T\le\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{b^2}{a^2+b^2+c^2}+\dfrac{c^2}{a^2+b^2+c^2}=1\)
\(T_{max}=1\) khi \(a=b=c=1\)
Cứ phải cảnh giác bạn à:
không biết hay vô tình hay hưu ý nữa nhưng các câu hỏi sai xuất hiện rất nhiều
khi hỏi lại, không thấy phải hồi. hay là người hỏi cũng chưa hiểu câu hỏi
ap dung bdt am gm
\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)
\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)
tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)
\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)
tiep tuc ap dung bat cauchy-schwarz dang engel ta co
\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)
dau = xay ra \(\Leftrightarrow a=b=c=1\)
( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8
\(\Rightarrow\)a ( a + b + c ) + bc = 8
\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)
\(\Rightarrow abc\left(a+b+c\right)\le16\)
Vậy GTLN của A là 16
mình cảm ơn ạ